

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52

## Vistoria: A Multimodal System to Support Fictional Story Writing through Instrumental Image-Text Co-Editing

ANONYMOUS AUTHOR(S)

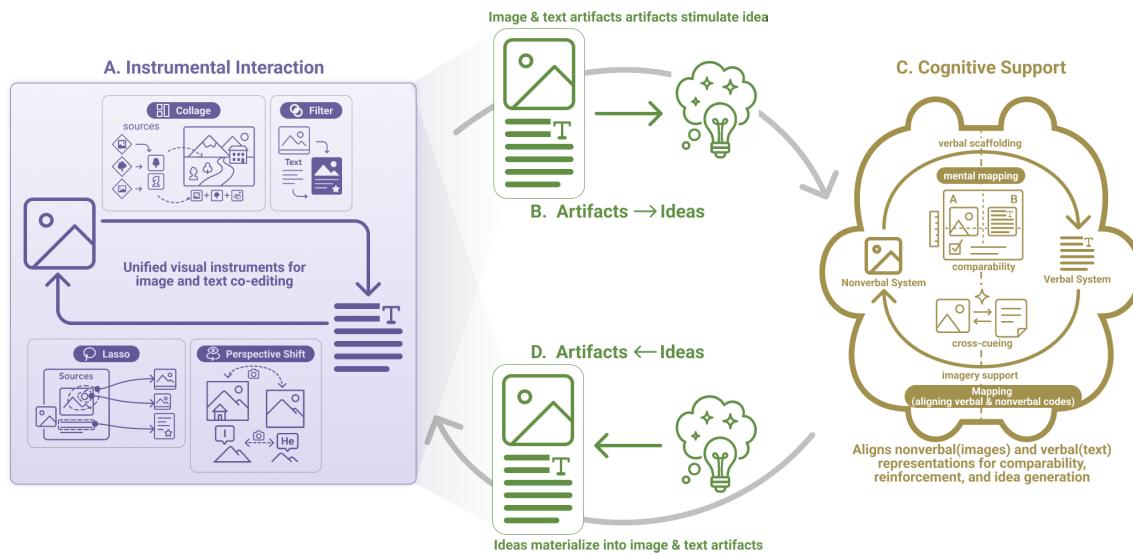



Fig. 1. Vistoria supports a cyclic workflow in which multimodal artifacts and ideas co-evolve. (A) Instrument Interaction: a unified set of instrumental operations (lasso, collage, perspective shift, and filter) enables image-text co-editing. (B) Artifacts → Idea: the resulting image-text alignment artifacts stimulate new story directions. (C) Cognitive Support: leveraging image-text alignment to synchronize verbal and non-verbal processing to enhance idea formation. (D) Ideas → Artifacts: emerging ideas are materialized back into new cards, closing the loop and driving iterative ideation, exploration, and integration.

Humans think visually—we remember in images, dream in pictures, and use visual metaphors to communicate. Yet, most creative writing tools remain text-centric, limiting how writers plan and translate ideas. We present Vistoria, a system for synchronized image-text co-editing in fictional story writing. A formative Wizard-of-Oz co-design study with 10 story writers revealed how sketches, images, and text serve as essential elements for ideation and organization. Drawing on theories of Instrumental Interaction, Vistoria introduces instrumental operations—lasso, collage, perspective shift, and filter that enable seamless narrative exploration across modalities. A controlled study with 12 participants shows that co-editing enhances expressiveness, immersion, and collaboration, opening space for writers to follow divergent story directions and craft more vivid, detailed narratives. While multimodality increased cognitive demand, participants reported stronger senses of ownership and agency. These findings demonstrate how multimodal co-editing expands creative potential by balancing abstraction and concreteness in narrative development.

Additional Key Words and Phrases: Multimodality, Creativity Support, Storytelling, Creative Writing, Instrumental Interaction

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM

**53 ACM Reference Format:**

54 Anonymous Author(s). 2026. Vistoria: A Multimodal System to Support Fictional Story Writing through Instrumental Image-Text  
 55 Co-Editing. In *Proceedings of the 2026 CHI Conference on Human Factors in Computing Systems (CHI '26), April 13–17, 2026, Creant el*  
 56 *demà junts, Barcelona*. ACM, New York, NY, USA, 35 pages. <https://doi.org/10.1145/nnnnnnnnnnnnnn>

**58**  
**59**  
**60 1 Introduction**

61 Human thinking involves multimodal processing. Visual processes play a central role in cognition: we recall experiences  
 62 as spatial scenes, form mental models through imagery, and use visual structure to organize and interpret information [36,  
 63 37, 68]. Language is similarly entwined with imagery. Particularly, text comprehension often evokes mental pictures,  
 64 and abstract ideas are commonly articulated through spatial metaphors such as path, framework, or perspective [55].  
 65 Dual Coding Theory frames this coupling between imagery and language, positing that humans draw on both verbal  
 66 and nonverbal channels to represent and support specific reasoning and communicative processes [20].

67 Story writing is particularly multimodal in nature. During the planning phase, experienced writers often use both  
 68 imagery and language to construct the story world. They visualize spatial layouts, character interactions, and scene  
 69 dynamics, while using textual notes to label, sequence, and reason about narrative structure [4, 19, 22, 25]. In the  
 70 translating phase, visual details serve as an anchor that shapes how writers organize narrative detail and emotional  
 71 tone, while texts linearize these visualized ideas into descriptions, dialogue, and narrative perspective that readers can  
 72 follow [49, 61]. Crucially, nonverbal and verbal channels do not operate in isolation: writers use imagery to trigger  
 73 new wording, and emerging text in turn elicits further mental images [43, 88]. Therefore, there is a great opportunity  
 74 for tools that support story writing to match this multimodal complexity by accommodating the continuous interplay  
 75 between visual and textual thinking within the same workflow.

76 Yet, current writing tools remain overwhelmingly text-centric, treating linear text as the primary or sole medium of  
 77 expression [31, 44]. Although recent systems powered by Large Language Models (LLMs) incorporate visual elements  
 78 through image generation or retrieval, these visuals remain peripheral. They function mainly as prompts [66], static  
 79 references [67], or organizational diagrams [59, 80], rather than as tightly integrated, manipulable representations  
 80 along with text. This requires writers to translate visual ideas back into text, increasing cognitive load [11, 85, 88]. Such  
 81 back-and-forth conversion also constrains cross-modal collaboration and narrows the range of creative possibilities  
 82 that a unified multimodal system could otherwise support.

83 To examine this gap, we conducted a formative Wizard-of-Oz (WoZ) co-design study with 10 experienced writers  
 84 to inform the design of a unified image-text multimodal system that supports the planning and translation phases of  
 85 fictional story writing. We found that text and images play distinct yet complementary roles in the writing process.  
 86 Writers expressed a need to directly manipulate text and images for fine-grained editing and alignment, valuing the  
 87 ability to move fluidly between them.

88 Based on these formative results, we developed Vistoria, a system that transforms fictional story writing from a  
 89 text-centered process into a multimodal co-editing experience that integrates text, images, and sketches. The design of  
 90 Vistoria draws on the principle of Instrumental Interaction, designing a set of instrumental operations (lasso, collage,  
 91 perspective shift, and filter). These functions can be applied to either text or images, where a single action simultaneously  
 92 affects both images and text, minimizing switching costs and preserving creative flow [6, 69, 72]. Based on Dual Coding  
 93 Theory, Vistoria enables the alignment of text and visual representations, ensuring that edits in one modality are  
 94 appropriately reflected in the other.

105 We conducted a controlled study with 12 participants to examine how multimodal image–text co-editing supports  
106 fictional story writing, with a focus on evaluating the system’s usability and understanding its creative support. Overall,  
107 the study showed that Vistoria enhances expressiveness, immersion, and exploration, enabling participants to have  
108 more divergent ideas and write detailed narratives. Participants used the instrumental operations to refine ideas at  
109 multiple scales, explore alternative directions. While this workflow increased mental and physical workload, it also  
110 supported writers’ senses of agency and ownership, as they maintained greater operational control over narrative  
111 development.  
112

113 In summary, this work contributes:

114

- 115 • A WoZ co-design study with 10 writers examined the practices and needs of using multimodal elements to  
116 externalize ideas and develop narratives in the planning and translating phase of fictional story writing;
- 117 • Vistoria, a multimodal co-editing system that unifies text and visual images through instrumental operations  
118 and a synchronized editing loop to support fictional story writing;
- 119 • A controlled usability study with 12 participants demonstrates the potential of Vistoria, suggesting that  
120 multimodal co-editing can enhance expressiveness, idea generation, and narrative development in fictional  
121 story writing.

122

## 123 2 Related Work

### 124 2.1 Using Visuals to Support the Cognitive Process of Fictional Story Writing

125 Fictional story writing is distinct from argumentative or expository genres in its emphasis on imagination, world-  
126 building, and character development [25]. Writers must invent narrative worlds and characters while ensuring coherence,  
127 which poses unique cognitive challenges: abstract, nonverbal mental images must be transformed into structured  
128 narrative elements and then into text [4].

129 The Cognitive Process Model of Writing [28, 30] frames writing as recursive processes of planning, translating, and  
130 reviewing. In fictional story writing, the phases from planning to translation are especially demanding, as writers  
131 move from imaginative constructs to linear verbal representation, imposing a high cognitive load due to the need for  
132 simultaneous translation and structural organization. However, visual representations can scaffold this process by  
133 externalizing abstract ideas. Research shows that picture prompts improve writing coherence [61], and visual images  
134 stimulate creativity in narrative writing [49]. In practice, sketches, maps, and diagrams externalize plot, setting, and  
135 character relationships that writers actively manipulate during planning and revision, while also serving as cognitive  
136 anchors during translation to maintain coherence and consistency. [88]. Dual Coding Theory [20] explains these benefits:  
137 verbal and nonverbal systems function separately but also interact, creating richer memory traces when information  
138 is encoded in both modalities. In fictional writing, visual representations of narrative elements complement verbal  
139 planning, making abstract concepts more concrete and retrievable. When writers encounter difficulties in translation,  
140 visual anchors provide alternative access to imaginative content, reducing cognitive load and enabling more fluid  
141 expression [5]. These visual structures are not merely supportive; they function as alternative representational spaces in  
142 which writers perform cognitive operations that parallel textual editing and support non-linear narrative leaps [73, 85].

143 However, existing creativity-support systems largely leverage visuals in limited ways, focusing on inspiration,  
144 reference, or structural overview rather than enabling writers to directly manipulate visual narrative elements and  
145 align with text editing. Planning-focused systems such as CCI, Sketchar, and CharacterMeet assist authors in character  
146 and world development, through image-guided backgrounds or conversational refinement of characters [48, 65, 66].

157 Translation-focused tools like ScriptViz and Script2Screen aim to align textual composition with visual referents, either  
 158 by retrieving reference visuals from movie databases [67] or by synchronizing scriptwriting with audiovisual scene  
 159 creation [82]. Complexity management systems, for example, WhatIF [59], ClueCart [80], and PlotMap [81], help  
 160 writers maintain structural coherence by visualizing branched narratives, organizing narrative clues hierarchically, or  
 161 integrating spatial layouts with textual plot structures.  
 162

163 In these systems, writers may look at images to spark ideas, but operations such as cutting, re-ordering, or reframing  
 164 narratives still have to be performed only in the verbal channel. Because the underlying story state is effectively defined  
 165 only through text, visuals cannot serve as core writing operations such as restructuring events, adjusting focalization, or  
 166 reorganizing character relationships [28, 88]. This separation requires writers to repeatedly convert visually grounded  
 167 ideas back into verbal form for any narrative change to take effect, thereby increasing cognitive load and undermining  
 168 many of the well-established benefits of external representations such as diagrams, sketches, and other forms of external  
 169 cognition [40, 74]. As a result, images remain outside the recursive planning-translating loop. To address this gap, our  
 170 work treats visual and text representations as synchronized and co-editing materials, allowing writers to manipulate  
 171 narrative elements across image and text through the same set of operations and thereby more tightly aligning verbal  
 172 and nonverbal with the cognitive processes of fictional story writing.  
 173

## 174 2.2 LLM-powered Multimodality Tools for Creativity in Content Creation

175 Recent multimodal creativity tools move beyond linear prompting by enabling direct manipulation of creative elements,  
 176 helping creators express intentions that language alone cannot capture [52, 69]. Powered by advanced Large Language  
 177 Models (LLMs), these systems address fundamental barriers through three complementary mechanisms. First, they  
 178 externalize creative structures, and support better intention expression. Tools like AI-Instruments [69] and Brickify [72]  
 179 transform abstract intentions into manipulable interface objects or reusable visual tokens, rendering otherwise ineffable  
 180 ideas as visible, persistent, and operable elements. Second, in recent multimodal systems, sketches always act as a  
 181 nonverbal, spatially grounded modality that conveys structure, hierarchy, and relations far more efficiently than language.  
 182 DrawTalking [70] combines freehand sketching with spoken narration, enabling natural intention communication. Code  
 183 Shaping [86] allows developers to make sketched annotations directly on the code editor to support fuzzy, incremental  
 184 expression of intent. Third, supporting iterative refinement, Inkspire [47] and AIdeation [79] accelerate variation and  
 185 exploration, enabling rapid cycles of sketch-to-output or recombination of references.  
 186

187 Seeking tighter coupling for fictional story writing, recent systems push the integration of multimodal interaction  
 188 in different ways [18, 19]. These systems are designed in response to growing evidence that text-only, model-driven  
 189 workflows cause LLM-assisted stories to converge toward similar narrative structures, limiting exploration, reducing  
 190 originality, and diminishing writers' expressive control [13, 24, 46]. WorldSmith supports layered edits and hierarchical  
 191 compositions through sketches, making it easier to grow a world piece by piece instead of through single and monolithic  
 192 prompts [22]. XCreation [85] supports cross-modal storybook creation by integrating an interpretable entity-relation  
 193 graph, improving the usability of the underlying generative structures. Toyteller [19] maps symbolic motions to  
 194 character actions, letting users express rich social and emotional interactions that are often hard to write down explicitly  
 195 only using text. Visual Writing defines an approach where writers edit stories by manipulating visual representations  
 196 to make the underlying narrative structure more comprehensible and easier to work with than linear text alone [53].  
 197

198 This line of multimodal research demonstrates that combining language with gestures, sketches, and direct  
 199 manipulation can offload cognitive work from linear prompting and give creators more expressive, situated channels  
 200 for specifying and revising intent. Building on this line of work, our system introduces a canvas-based interface that  
 201 Manuscript submitted to ACM

209 integrates images, sketches, and text to support the externalization of mental imagery and the articulation of narrative  
210 intent. Through designing a set of instrumental operations for image–text co-editing to enable iterative refinement,  
211 Vistoria allows writers to move fluidly between verbal and nonverbal modes of thinking as they develop fictional stories.  
212

### 213 214 2.3 Instrumental Interaction

215 Instrumental Interaction is central to understanding how users control and refine digital systems. Beaudouin-Lafon [6]  
216 proposed it as a shift from designing static interface elements to designing instruments that mediate between users  
217 and domain objects. A key principle is reification, which transforms abstract commands into persistent, manipulable  
218 objects [39]. In computing, this elevates implicit system descriptions into explicit first-class entities. In LLM-assisted  
219 workflows, this principle appears in modular prompt blocks for structured edits [87] and in Textoshop’s reification of  
220 abstract image editing commands (e.g., tone adjustment, boolean operations, layers) into direct manipulation tools for  
221 text [52]. A second principle is polymorphism, where the same instrument applies across contexts [51]. This reduces  
222 cognitive load by enabling predictable, transferable patterns, e.g., copy–paste works consistently across text, images,  
223 and files [1], and scrollbars operate similarly across documents, spreadsheets, and browsers [51]. Finally, reuse allows  
224 users to replay or adapt prior operations, from macros to redo commands [69]. Systems like Spacetime exemplify this  
225 by objectifying space, time, and actions into persistent containers, enabling edits to be carried forward as manipulable  
226 entities [83]. Together, these principles reduce cognitive burden by externalizing interaction histories, making them  
227 manipulable, transferable, and extensible.  
228

229 In our system, we extend this perspective to the design of multimodal tools for fictional story writing. We reify  
230 narrative development as a set of instrumental operations spanning text and imagery. Through polymorphism, the same  
231 operation can be applied to both LLM-generated text and images. This combination of reification and polymorphism  
232 enables writers to shape multimodal outputs fluidly, aligning with both verbal and nonverbal perceptions.  
233

### 234 3 Formative Study

235 Previous research shows that multimodal tools enhance fictional story writing by making abstract concepts tangible,  
236 reducing cognitive load, and improving creativity and coherence [17, 18, 22, 88]. However, current tools treat images as  
237 supplementary rather than integral to the creative process, leaving unclear how writers actually integrate multiple  
238 content types into a cohesive workflow.  
239

240 To address this gap, we conducted a WoZ co-design study [21] examining how creators use multimodal content  
241 (images, text, sketches) when planning and drafting fictional stories [28, 30, 88]. Our investigation focused on three  
242 questions: (1) **Multimodal information use**: what types of multimodal content users employ and how they leverage  
243 these materials for idea generation; (2) **Iteration and integration**: how creators refine and combine multimodal  
244 artifacts in world-building and narrative development; and (3) **Organization of inspirations**: how creators organize,  
245 connect, and refine dispersed inspirations through multimodal manipulation. The WoZ setup simulated AI-assisted  
246 visual and textual support while sustaining the impression of an intelligent, interactive system.  
247

248 Our system is designed for writers with intermediate to expert writing expertise, rather than novices who are  
249 still learning basic narrative composition. This target group typically possesses established writing habits and a solid  
250 understanding of narrative structure. As contemporary writers increasingly incorporate large language models (LLMs)  
251 into their creative workflows (idea generation, style adjustment, etc.) [14, 43], we target writers who have hands-on  
252 experience using LLMs to assist their writing, even though they may not be experts in multimodal interaction or  
253 prompting.  
254

261 **3.1 Process**

262 We designed a Wizard-of-Oz (WoZ) co-design study, positioning participants as active co-designers and treating text,  
 263 sketches, and images as shared design materials [21, 71, 78].

264 *3.1.1 Participants.* For the formative study, we recruited 10 participants through student organizations by sharing  
 265 our study announcement in group chats, each with at least two years of experience in creative writing. The group  
 266 included three fictional story writers, three animation scriptwriters, two visual film creators, one new media creator,  
 267 and one online fiction writer. Eight participants held a master’s degree or higher, and two held a bachelor’s degree. All  
 268 participants had experience using LLMs to assist in their writing, AI familiarity ranging from casual use (fewer than  
 269 two days per week, n=5) to daily workflow integration (five or more days per week, n=5).

270 *Experimental Setup.* Three days before the session, participants were instructed to prepare a brief fictional story  
 271 outline consisting of several sentences that followed one of the narrative structures from The Seven Basic Plots [9],  
 272 which served as the foundation for subsequent ideation and content development. The 90-minute main session took  
 273 place in either Figma [27] or Miro board [58], based on participant preference. Each session concluded with a 30-minute  
 274 semi-structured interview probing how multimodal materials mediated co-creation, and what interaction patterns and  
 275 workflows participants desired.

276 *3.1.2 Wizard-of-Oz System and Session Process.* For the WoZ interface, we utilized the canvas in either Figma [27] or  
 277 Miro [58] as a collaborative space, which was divided into (1) a user-facing “Text Editor” where participants can put in  
 278 the outline and edit the story, (2) the “Canvas” where generated images and text, and participants’ notes were, and (3)  
 279 a hidden “Wizard Control Center” (as shown in Figure 2). Participants communicated via voice, text (stick notes), or  
 280 hand-drawn sketches while two researchers acted as the “Wizards (system backend)” in real-time to generate outputs,  
 281 ensuring responsiveness, copying user inputs into separate windows. Researchers ran Claude for text generation,  
 282 ChatGPT (GPT-4o) and Midjourney<sup>1</sup>, for simulating the visual engine, then pasting the results back onto the “Canvas”.  
 283 To ensure consistency, the Wizards followed: (1) input the user’s sketch/text as a literal prompt. Use the initial outline as  
 284 contextual information for prompts; (2) do not offer creative suggestions unless explicitly asked; (3) to ensure diversity  
 285 of output style, one researcher generated both texts and images via ChatGPT, and the other researcher generated images  
 286 via Midjourney and texts via Claude. The two wizards ensured that participants were provided with results that were  
 287 both timely and diverse.

288 *Session Process.* During the session, participants engaged in fictional story co-design through activities including  
 289 generative prompts, collage, and storyboard-like arrangement while interacting with the wizards. Rather than working  
 290 toward a fixed output, participants iteratively developed stories of about 300 words while envisioning how the tool  
 291 itself should behave.

292 **3.2 Formative Study Findings**

293 *3.2.1 Using Multimodal Input to Reify Vague Ideas.* As shown in the **Appendix 2**, participants utilized multimodal  
 294 expressions, including text, sketches, and images, as co-design materials to articulate and negotiate intentions with the  
 295 wizarded system.

296 **Sketches** externalized vague intentions and spatial imagination. For example, P4 envisioned a scene where clown  
 297 Joko appeared on stage and created a sketch with textual annotations describing the intended atmosphere, hoping AI

300 <sup>1</sup>All models were accessed via their commercial web interfaces: <https://claude.ai> [2], <https://chatgpt.com> [62], and <https://www.midjourney.com/> [57]  
 301 respectively, in June 2025.

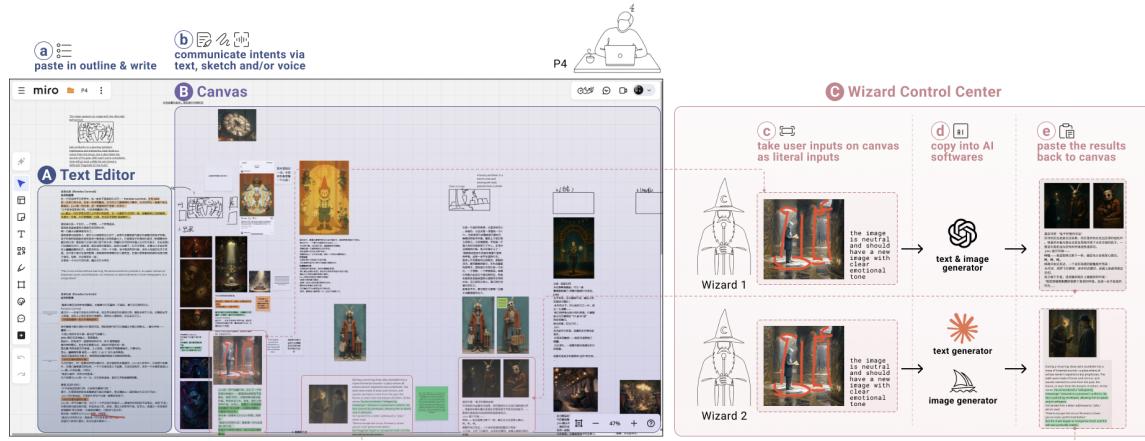



Fig. 2. WoZ System and Study Process (the example of P4) (a) The user edits text in the Text editor; (b) The user writes, sketches, and speaks out their intents; (c)-(d) both wizards paste in the user's inputs into AI software windows; (e) wizards pasted the generated results back onto canvas.

could elaborate narrative details. Sketches were also frequently used to express ideas that participants found difficult to convey through prompts alone (P6, P7, P8), as they were seen as carrying richer layout and spatial information. **Text** functioned as the primary medium for conveying intent, allowing participants to express connections between desired content and existing stories. Participants also frequently used textual annotations to specify story parts or image types for AI-generated content and to guide the direction of content generation. They also used textual annotations to record the inspirations they received and how those ideas might be used in writing. **Images** communicated style and mood expectations. P3 altered an AI-generated picture's style by supplying a reference image, while P1 noted, *“if possible, I want to use a ‘supporting image’—a vague reference picture—as a basis, expecting the AI to generate more detailed images derived from it.”* Combining image outputs with textual descriptions helped participants enrich their limited knowledge. For example, P7 requested AI-generated designs of an ancient Chinese poison bottle as a narrative element, noting her vague understanding of the concept. In addition, sketches were often paired with images or text to further articulate the intentions participants held in mind (P4, P7).

For the content, participants most often sought LLM elaboration on **characters**, **objects**, and **scenes**, expressing the need for assistance with character design refinement, setting depictions, or object visualization. These findings highlighted the value of systems that accept multimodal input and help co-designers transform nascent ideas into concrete narrative materials.

**3.2.2 Image-Text Interplay as Complementary Design Moves.** Participants perceived text and images as distinct yet complementary in their story writing. We observed participants often switching between abstraction (text) and concreteness (images) as a recurring co-design pattern.

**Text as open imagination.** Participants described text as a “blank canvas” for boundless imagination. P4 noted, *“text allows me to imagine many things in my mind,”* and P1 emphasized text as “infinite imagination on a blank page.” P8 highlighted that text helped set up the narrative structure before layering in visuals. This suggests systems should treat text as a flexible space for ideation and intent communication, where ambiguity can be preserved rather than early resolved.

*365 Images as concreteness, inspiration, and feedback.* Images grounded abstract ideas, while their randomness often  
*366 sparked unexpected inspiration.* P1 explained: *“The randomness in AI-generated images goes beyond what I want or can*  
*367 express; it helps me imagine the next step of the story.”* Similarly, P4 refined Lily’s behavior based on an unexpected visual  
*368 detail, and P3 used images as feedback for progressive refinement.* P10 regarded referring to images as a “look-and-write  
*369 exercise” that scaffolds scene construction.* These accounts highlight the value of image outputs not just as illustrations  
*370 but as provocations.* participants can leverage it through image-based iteration, selection, and reinterpretation.  
*371*

*372 Complementary interplay.* Participants emphasized that neither modality sufficed alone: images “set the vibe,” while  
*373 text reframed meaning.* P8 noted, *“Images can serve as references for appearance when I don’t have many ideas, while text*  
*374 quickly triggers associations.”* We observed participants iteratively moving between text for open-ended imagination and  
*375 images for concrete grounding, forming a cycle of divergence and convergence (P4, P5, P8, P9, P10).* Four participants (P1,  
*376 P2, P5, P7) also expressed a desire for text and image changes to be synchronized, so they would not need to constantly*  
*377 cross-check and compare updates across modalities.* In addition, the concurrent presentation of text and images further  
*378 facilitates narrative expression.* As P7 explained, *“having text and images appear together allows inspiration to arise*  
*379 simultaneously in both modalities, helping me understand how to describe the scene more effectively. I can describe the*  
*380 scene while referencing the image, and directly adopt AI-generated text when I find it useful.”* They noted that when an  
*381 image is edited, the corresponding text should update accordingly.*

*382 This interplay suggested design opportunities for systems that incorporated smooth transitions between text and images*  
*383 while aligning these two modalities, enabling participants to fluidly move between abstract exploration and*  
*384 concrete elaboration*

*385 3.2.3 Direct Manipulation of Multimodal Artifacts.* Participants expressed a strong interest in treating text and images as  
*386 manipulable, recombinable design materials.* Two recurring practices pointed to design needs for more fluid multimodal  
*387 manipulation.*

*388 Collaging and Recombination.* Participants frequently merged elements across outputs to spark new ideas. P9  
*389 envisioned combining “the house from the first AI-generated images with the street from the second picture” to*  
*390 construct scenes, while P7 highlighted that “randomly combining characters and scenes” could inspire unexpected*  
*391 connections when accompanied by textual descriptions.* As she explained, *“if I can see an AI-generated image of my*  
*392 protagonist in one of the scenes, it helps me better imagine potential connections between elements that might otherwise*  
*393 seem unrelated. Being able to visualize scenes that are otherwise difficult to imagine enables me to write more narrative*  
*394 descriptions more easily.”* Such practices illustrated the potential of collage and recombination as creative strategies.

*395 402 Granular Editing and Annotation.* Beyond recombination, participants desired fine-grained control over outputs.  
*396 Sticky notes captured details for iteration and served as prompts for later development.* Participants also wanted more  
*397 localized operations, such as regenerating specific regions (P1, P3), extracting and reusing circled image elements (P5),*  
*398 or annotating character personas for refinement (P2).* They left narrative prompts for later translation, e.g., P2’s note  
*399 “Ending could be related to why this postman job even exists.”* These behaviors emphasized editing and annotation as both  
*400 vehicles for iteration and a bridge to subsequent writing.*

*401 Together, these findings suggested systems should enable flexible recombination, localized editing, and traceable*  
*402 annotations to help creators iteratively refine narrative materials.*

*403 412 3.2.4 From Fragmented Inspirations to Coherent Storylines.* While participants often highlighted text or circled inspiring  
*404 image details, organizing these dispersed fragments into coherent narratives was a persistent challenge in the Planning*  
*405 phase.* As P2 noted, *“everything quickly became too messy on the canvas,”* and P4 likened fragments on the canvas  
*406 to*

417 to “many cards that required connections,” where narrative coherence depends on linking passages, characters, and  
 418 settings from scattered parts. Furthermore, P6 wished for mind map-like tools to scaffold this process. Participants also  
 419 requested clustering notes, surfacing latent relations (e.g., by character/object/setting), and consolidating materials into  
 420 reusable “setting cards” to ensure cross-chapter consistency and avoid logic conflicts (P4, P7).  
 421

422 These challenges pointed to opportunities for systems that transform fragmented inspirations into structured  
 423 storylines by supporting clustering, relation mapping, and the creation of reusable narrative units that preserve  
 424 coherence across iterations.  
 425

### 426 3.3 Design Goals

427 Drawing on insights from our WoZ co-design study, prior work on multimodal LLM tools, and theories of Structural  
 428 Mapping and Instrumental Interaction (Section 2.3), we identify four design goals for a multimodal content creation  
 429 interface that supports the planning and translating phase in fictional story writing [28, 30, 88].  
 430

- 431 • **DG1: Supporting the Expression of Ideas through Multimodality.** Grounded in the findings in Section 3.2.1,  
 432 our system should provide multimodal mechanisms combining sketches, text, and images to capture early  
 433 intention, imprecise expressions, and help transform them into concrete narrative materials for further iterative  
 434 editing or re-organizing.  
 435
- 436 • **DG2: Aligning Text and Images for Iterative Creative Exploration.** Informed by findings in Section 3.2.2,  
 437 our system should enable fluid cross-modal iteration: textual edits can be re-visualized, and image refine-  
 438 ments can inform text descriptions. Grounded in Dual Coding Theory, text and image updates should also be  
 439 synchronized to more effectively align verbal and nonverbal perception.  
 440
- 441 • **DG3: Enabling Polymorphic Cross-Modal Manipulation.** Informed by findings in Section 3.2.3, our system  
 442 should support direct manipulation interactions for both text and images. Guided by Instrumental Interaction’s  
 443 principle of polymorphism, we should design the same instrument for cross-modal editing to reduce switching  
 444 costs and enable writers to manipulate textual and visual fragments while maintaining narrative coherence.  
 445
- 446 • **DG4: Organizing and Reusing Fragments into Coherent Narratives.** Informed by the findings in Sec-  
 447 tion 3.2.4, our system should support clustering and organizing fragments and fleeting ideations during the  
 448 exploratory phase, surface latent connections, and consolidate dispersed inspirations into coherent, evolving  
 449 narrative structures that support translation into final writing.  
 450

## 451 4 Vistoria System

452 In this section, we present the key features of Vistoria. As shown in Figure 3, the interface comprises three primary  
 453 components: a left text editor, a central collapsible cluster panel, and a right canvas interface. The text editor displays  
 454 the current story draft, serving as contextual information for content generation. The right canvas supports freeform  
 455 sketching, text input, and image-text generation and editing tools. The central cluster panel aggregates highlights  
 456 and annotations from canvas, displaying related plots, settings, and descriptions of each highlighted element for easy  
 457 reference and overview.  
 458

### 459 4.1 Key Features

460 4.1.1 *Reifying Intention through Multimodal Generation.* The system enables writers to externalize early, vague ideas  
 461 using multimodal inputs (DG1). To support this, Vistoria converts multimodal inputs into cards that pair an image  
 462

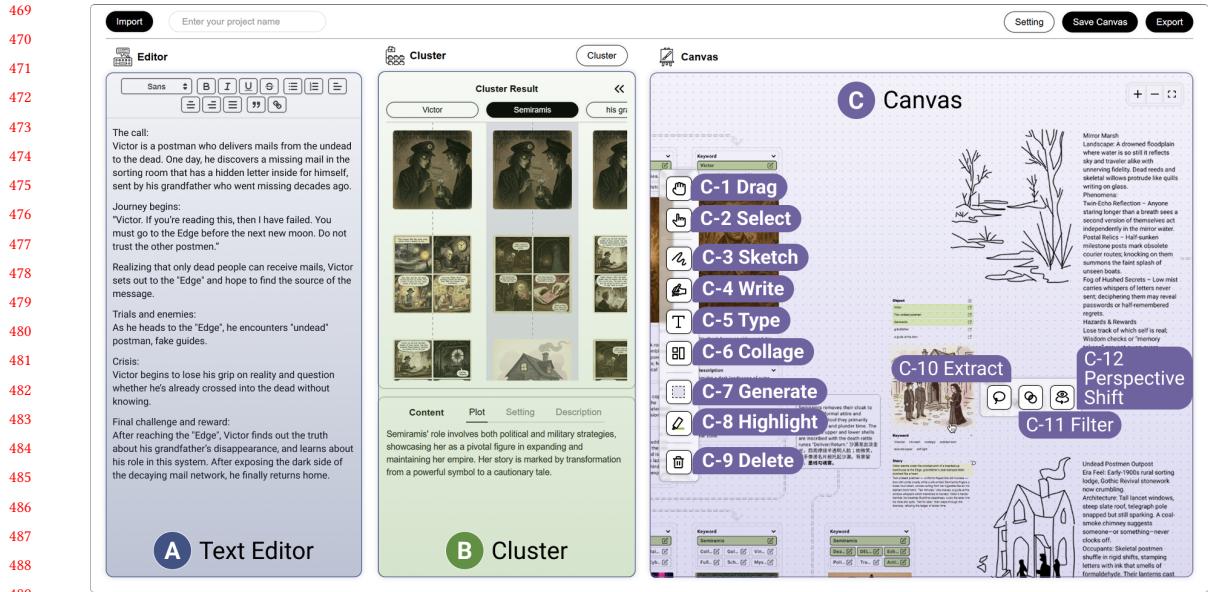



Fig. 3. Vistoria's interface: a left text editor, a central Cluster panel (can be collapsed when not used), and a right free-form Canvas.

with a narrative segment. These cards reify multimodal input into reusable artifacts that persist on the canvas and can be iteratively regenerated, while also serving as alignable units in which text and image convey the same underlying meaning.

Vistoria further balances precision and exploration by offering two complementary generation modes. In *Exact Craft* mode, single cards closely adhere to the author's expressed intention to concretize specific ideas. In *Creative Spark* mode, three cards are generated to represent diverse options based on the writer's intention. The system deliberately introduces variation around characters, settings, or objects, providing alternative prompts that can inspire new directions.

**4.1.2 Synchronized Image–Text Co-Editing through Instrumental Operations.** Fictional story writing benefits from fluid movement between abstract textual reasoning and concrete visual imagination. The system should tightly align text and images so that edits in one modality fluidly inform the other (DG2, DG3). To address this, we introduce a set of *Instrumental Operations* (Figure 4) designed around three principles: (1) *Reification (instrumental interaction)*, which draws on familiar image-editing operations to make abstract image–text co-editing actions more concrete and manipulable; (2) *Polymorphism (instrumental interaction)*, designing a set of instrumental operations (lasso, collage, filter, perspective shift) which ensure the same operations apply uniformly across text and images to lower switching cost; and (3) *Dual Coding Theory*, which indicates that verbal and nonverbal changes should be aligned to maintain coherence across cognitive channels.

**5.15 Lasso.** The *lasso* instrument exemplifies reification by turning the abstract action of “focusing on part of a story” into a manipulable unit: selecting a region in *either* an image or a fragment of text triggers the generation of a new card focusing on the selected part with enriched narrative and visual details. Through polymorphism, the same selection logic applies across modalities—whether circling a visual detail or isolating a text segment—providing a consistent

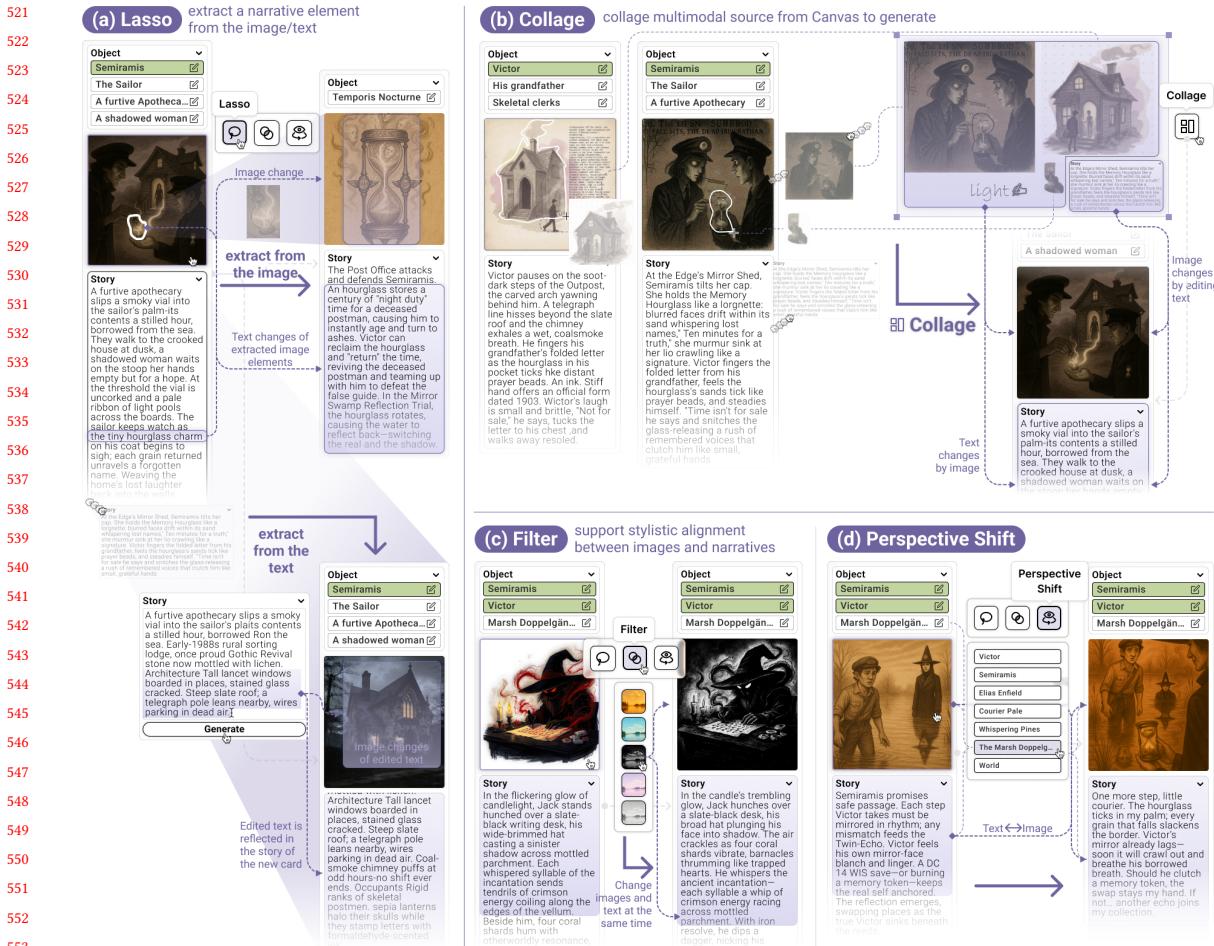



Fig. 4. A set of instrumental operations for image-text co-editing to enhance planning and translating of fictional story writing: (a) Lasso selects regions for coupled image–text edits. (b) Collage enables writers to extract elements and compose across cards to discover new narrative directions. (c) Perspective Shift changes an image’s viewpoint and automatically regenerates the story’s point of view (first/third/second person). (d) Filters align visual style and textual tone (e.g., melancholic/dreamy) by jointly altering image effects and rewriting prose.

interaction pattern. The text within the selected area in the original content will be emphasized to form a new card. The extracted portion of text is used to regenerate the corresponding image. The lassoed image region and the expanded story fragment correspond to one another, aligning visual and textual perspectives within the same narrative unit (Figure 4 (a)).

**Collage.** The *collage* instrument reifies the abstract act of “recombining inspirations” into a tangible manipulation: fragments of images, sketches, or text can be directly composed within a collage frame to form a new card. The same cut–paste–combine logic applies uniformly across modalities—an image region, a text excerpt, or a sketch element can all be treated as compositional materials for intention-based generation. The system interprets the spatial arrangement of these multimodal pieces as narrative intent, generating a card where textual descriptions and visual depictions are

aligned. For instance, merging two character fragments not only produces a combined image but also generates a new story segment situating them together, ensuring that narrative and imagery evolve in sync (Figure 4 (b)).

**Filter.** Stylistic coherence is critical in fictional story writing, as consistent affective and aesthetic cues sustain narrative transportation [32], activate readers' interpretive schemas [3], and enhance the emotional resonance of literariness [56]. In Vistoria, the *filter* instrument reifies this abstraction into a concrete tool: applying a "melancholic" or "dreamy" filter adjusts the visual style and rewrites the accompanying prose to match the emotional tone (Appendix Table 4). Through polymorphism, the same filter operation works seamlessly across modalities, leveraging the correspondence between visual style in images and emotional tone in text to simultaneously act on both. By making intangible stylistic intentions manipulable and synchronized, filters expand expressive possibilities while maintaining narrative immersion (Figure 4 (c)).

**Perspective Shift.** Fictional story writing often utilizes perspective shift, and narratology highlights that changes in voice and focalization fundamentally reshape how events and characters are perceived [29]. Cognitive poetics further shows that such shifts alter readers' empathy and immersion. First-person narrations foster intimacy, while third-person perspectives enable broader structural awareness [38]. The perspective-shift instrument reifies this narratological concept into an actionable operation: changing the visual viewpoint of a scene automatically regenerates the story fragment from a first-, third-, or second-person perspective. Through *polymorphism*, this instrument applies consistently across modalities, altering either an image or its accompanying text triggers a corresponding adjustment in the other. The shift carries the same meaning across text and image: a new camera angle in the image corresponds to a new narrative voice in the text, allowing writers to explore empathy, distance, and awareness in a synchronized manner (Figure 4 (d)).

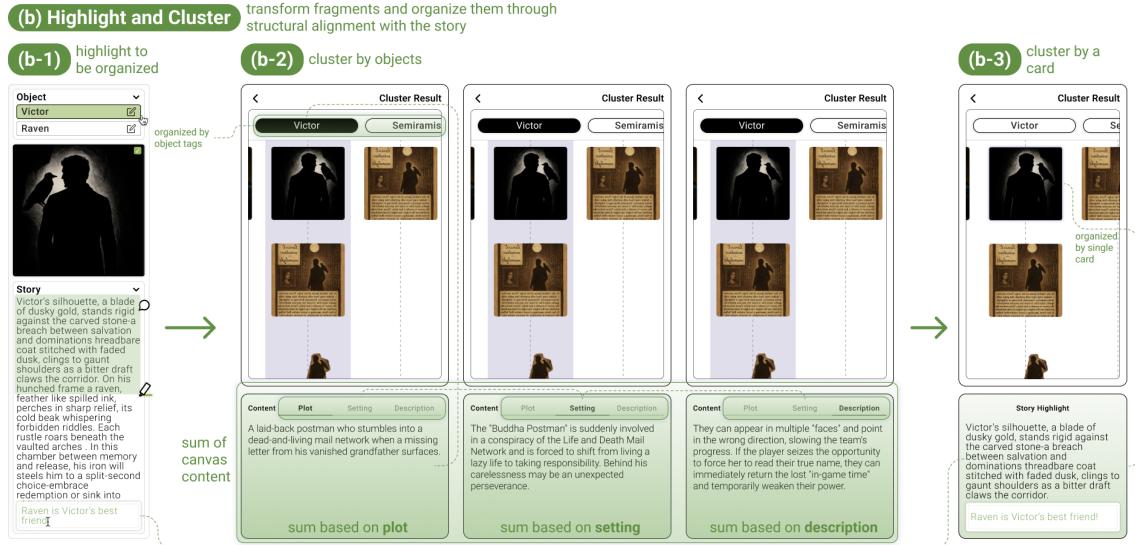



Fig. 5. Writers highlight objects and text segments on cards (b-1); the Cluster panel aggregates these by character/object/scene and can auto-summarize settings/plot/description about a certain object to guide final writing (b-2); Clicking on a specific image reveals the corresponding highlights and comments from earlier phases left on canvas (b-3).

625     4.1.3 *Highlight Elements and Cluster.* Writers often struggle to integrate scattered highlights and annotations on the  
 626     Canvas into coherent storylines, leaving ideas fragmented across cards (DG4). Vistoria addresses this by transforming  
 627     the dispersed fragments into reusable narrative building blocks, aligning them structurally across characters, objects,  
 628     and scenes. This process is centered in the cluster panel (Figure 5), which turns fragmented inputs into organized  
 629     knowledge assets.

630     On the canvas, writers can highlight textual segments, edit stories directly, and add inline comments noting potential  
 631     uses in later drafting. Story objects, such as characters, settings, or scenes, are represented as editable keywords  
 632     that can be highlighted by themselves. The system automatically links each highlighted object to its associated text,  
 633     consolidating references across multiple cards.

634     The cluster panel then aggregates all highlighted objects into an organized overview of evolving narrative elements.  
 635     This eliminates the need for manual scanning of scattered cards and provides writers with a dynamically updated,  
 636     object-centered workspace. Selecting an object reveals its complete set of associated materials, including linked images,  
 637     highlighted text segments, and comments, which creates a multimodal, context-rich reference for downstream writing.  
 638     Beyond simple aggregation, the panel supports higher-level knowledge construction through its summary feature. When  
 639     this feature is invoked, the system generates structured summaries of settings, descriptions, and plot elements derived  
 640     from highlights and comments. These summaries distill fragmented annotations into narrative building blocks [12],  
 641     enabling writers to iteratively scaffold coherent storylines from previously disjointed ideas.

## 642     4.2 Implementation

643     We adopted a decoupled front-end/back-end architecture. The React<sup>2</sup> front-end enables efficient rendering for complex  
 644     interactive interfaces, while the Flask<sup>3</sup> back-end flexibly handles model calls with minimal overhead. Axios manages  
 645     asynchronous communication between layers.

646     4.2.1 *Front-end.* The front-end consists of three main modules: the Canvas, the Cluster, and the Text Editor. Zustand<sup>4</sup>  
 647     centrally manages the global state (including canvas nodes, cluster selections, and text content) to ensure consistency  
 648     across all modules. To protect privacy during user studies, per-session data is stored in sessionStorage and automatically  
 649     clears when the tab closes, while users can manually export canvas nodes and text content via the top toolbar.

650     *Canvas Module.* The right-side canvas module consists of four distinct layers: (1). Node Interaction Layer (Bottom):  
 651     This layer uses React-Flow<sup>5</sup> to maintain a dynamic node-edge graph. Node types include card, collage, text, sketch,  
 652     handwriting, and image. All nodes share basic properties, such as ID, type, and coordinates, for edge linking, but the  
 653     internal data structures of those node types vary for rendering. For example, the “card” node includes features such  
 654     as image modification tools, image lasso selection, image highlighting, object manipulation, and basic information  
 655     display. (2). Pen-based Input Capture Layer: This layer supports natural interactions like freehand sketching, writing,  
 656     and lasso selection. It uses the perfect-freehand library<sup>6</sup> to smooth captured points and convert them into Scalable  
 657     Vector Graphics (SVGs). Each captured SVG stroke is added to the graph as a new node. (3). Generation Selection  
 658     Layer: A Document Object Model (DOM) based screenshot function ensures visual and positional consistency. After  
 659     clicking generate, the front-end sends both the screenshot and structured data of the nodes inside the selected area to

660     <sup>2</sup><https://react.dev/>

661     <sup>3</sup><https://flask.palletsprojects.com/>

662     <sup>4</sup><https://github.com/pmndrs/zustand>

663     <sup>5</sup><https://reactflow.dev/>

664     <sup>6</sup><https://github.com/steveruizok/perfect-freehand>

677 the backend, adds a new node to the graph, and awaits the returned data. (4). Tool Layer (Top): This is the most visible  
 678 layer. It contains operation tools and canvas control tools.  
 679

680 *Cluster Module.* The middle module displays selected information, including objects, images, text, and annotations.  
 681 Users filter this content from the node-edge graph by selecting specific objects. A button allows users to expand or  
 682 collapse this entire area.

683 *Text Editor Module.* The left-side text editor uses the React-Quill<sup>7</sup> component. It provides lightweight rich-text editing  
 684 capabilities designed to align with the narrative structure.  
 685

686 4.2.2 *Back-End Multi-Agent Flow.* The backend is organized as a multi-agent pipeline, where each prompt-specialized  
 687 LLM agent is organized sequentially. Rather than relying on a single model, the system decomposes the workflow into  
 688 three cooperating functional agents:  
 689

690 *Narrative Construction Agent.* This agent takes multimodal context—such as canvas screenshots which incorporate all  
 691 information (sketches, text inputs, and images) contained within the user-selected region to produce structured textual  
 692 outputs—including user intentions and story segments. Its prompts enforce consistency with contextual information  
 693 such as the existing story content in the text editor and the global stylistic constraints. In essence, the agent transforms  
 694 the user’s multimodal inputs into coherent narrative storylines. During implementation, the GPT-o4-mini<sup>8</sup> is used to  
 695 process canvas screenshots and contextual information to infer user intentions because of its rapid inference speed and  
 696 strong reasoning ability. GPT-4o<sup>9</sup> is used to refine these inferred intentions from o4-mini and contextual information into  
 697 polished, coherent story segments. Prompts for precise description generation of o4-mini are shown in Appendix A.5).  
 698 When applying instrumental operations for editing, the story segment from the previous card is also read in prompts  
 699 and modified accordingly.  
 700

701 *Visual Synthesis Agent.* Using the narrative produced by the Narrative Construction Agent as prompts, this agent  
 702 supports image generation using either the GPT-4o API or the FLUX diffusion model<sup>10</sup>. When reference images or  
 703 screenshots are available—such as during instrumental-operation edits that modify images or when multimodal inputs  
 704 include a base image or sketches—GPT-4o is used for image generation, leveraging its strong capabilities in image  
 705 understanding and re-generating based on base images. In all other cases, the FLUX diffusion model is used due to its  
 706 faster generation speed.  
 707

708 *Memory Agent.* The backend maintains a persistent, globally accessible memory of all previously generated image-text  
 709 pairs. This agent coordinates read/write operations to this store, enabling multi-turn reuse, cross-scene integration, and  
 710 contextual continuity. When the user later requests to merge scenes, change details, or perform local edits, this agent  
 711 retrieves relevant image-text pairs and passes them back to the earlier agents to re-initiate the pipeline.  
 712

## 713 5 User Study

714 To evaluate the usability of Vistoria and to understand how these multimodal interactions design support creativity, we  
 715 conducted an exploratory lab user study with 12 participants. We structure our user study around two complementary  
 716 components:  
 717

718 (1) A usability evaluation of Vistoria aiming to answer the following research questions:  
 719

720 **RQ1: How useful are the multimodal co-editing functions, and in what ways do they influence participants’ workflows?**

721  
 722 <sup>7</sup><https://github.com/zenoamaro/react-quill>

723 <sup>8</sup>We used OpenAI’s o4-mini model via the OpenAI API (model ID o4-mini) in August 2025 [64].

724 <sup>9</sup>We used OpenAI’s GPT-4o model via the OpenAI API (model ID gpt-4o) in August 2025 [63].

725 <sup>10</sup>We used the FLUX.1 diffusion model via the Black Forest Labs API in August 2025 [8].

729 **RQ2: How does multimodal image–text co-editing affect participants’ workload compared to a text-only baseline?**

730 (2) A pilot study examining the creativity support provided by Vistoria, focusing on:

731 **RQ3: How does multimodal image–text co-editing influence participants’ ideation and the development of fictional**

732 **stories?**

733 **RQ4: How does multimodal image–text co-editing influence participants’ sense of agency and ownership?**

734 RQ1 evaluates the usefulness of these multimodality functions and the strategies participants adopted in relation to  
735 DG3 (polymorphic instrumental operations). RQ3 explores how DG1 (reifying intentions through multimodal input)  
736 and DG2 (image-text alignment) support creative ideation and narrative development. The design of the cluster panel  
737 corresponding to DG4 functions mainly as auxiliary support and is not central to our user evaluation of multimodal  
738 interaction.

739 Note that we used the sense of ownership to refer to the writer’s “sense of possession” over the resulting narratives  
740 within the system, even the AI-generated artifacts [26, 34, 44, 84]. The declaration of the sense of agency, on the other  
741 hand, refers to the writer’s awareness of “initiating, executing, and controlling” key actions in the writing and artifact  
742 editing process [44, 45, 54, 60].

## 743 5.1 Participants

744 As the system targets intermediate to expert participants who understand narrative structure and already use LLMs in  
745 their creative workflows, we recruited 12 participants (6 males, 6 females, aged 21–32, M=25.5), all with prior creative  
746 writing experience. Participants were also recruited through student organizations by sharing our study announcement  
747 in their group chats. All held Bachelor’s degrees, with backgrounds spanning science, arts, design, or communication.  
748 Their creative practices included fiction writing, screenwriting, songwriting, advertising, research, and philosophy.  
749 Participants’ creative writing experience ranged from under one year (n=5) to over seven years (n=1), with others  
750 reporting 1–3 years (n=2) or 4–7 years (n=3). All participants were familiar with LLMs (e.g., ChatGPT, Gemini, Claude)  
751 and had used them for idea generation, editing, descriptive support, content expansion, world-building, and style  
752 imitation. Among the 12 participants, 6 use LLMs daily, while the remaining 6 are evenly split across several times  
753 a week, occasionally, and rarely (2 in each). Each participant received a \$40 USD compensation after finishing the  
754 experiment.

## 755 5.2 Procedure

756 **5.2.1 Apparatus.** Sessions were conducted on a laptop computer with keyboard and mouse for typing, dragging, and  
757 selecting. To support sketch input, we provided an external tablet (iPad) for freehand drawing on the canvas.

758 The baseline condition presented a side-by-side interface with a text editor and GPT-4o [62] conversational panel,  
759 enabling both manual editing and LLM-assisted text/image generation. Participants completed two story-writing tasks  
760 (Appendix A.3), each extending a given story beginning into a 300–500 word draft. Tasks were counterbalanced across  
761 conditions (Baseline vs. Vistoria).

762 **5.2.2 Study Procedure.** The study followed a within-subjects design with counterbalanced condition order. After  
763 informed consent and a demographic survey, participants were introduced to Vistoria through a written guide and  
764 tutorial video, followed by a short hands-on exploration (15 minutes).

765 In each condition, participants first focused on world-building and idea exploration (20 min) and then on refining  
766 and improving the story (20 min). We divided the writing task into two phases (exploration and refinement) to prevent  
767

781 participants from prematurely committing to a single storyline and to reduce fixation, thereby encouraging broader  
 782 ideation before focused improvement [75].  
 783

784 After each condition, participants completed surveys including NASA-TLX [33] and Creativity Support Index  
 785 (CSI) [15]. These surveys were chosen to be consistent with the standard measures employed in previous HCI system  
 786 work on multimodal LLM-assisted ideation and storytelling [16, 23, 76]. All surveys used 7-point Likert scales. After  
 787 both conditions finished, participants also completed a 15–20 minute semi-structured interview. All sessions were  
 788 video-recorded via Zoom. We collected system logs, final story drafts, canvas artifacts, image–text pairs, and interview  
 789 transcripts for analysis.  
 790

791 5.2.3 *Data analysis.* We employed a mixed-methods approach to systematically analyze three types of data.  
 792

793 For the qualitative interview data, we conducted an inductive, grounded theory-informed analysis [77]. First, two  
 794 authors independently performed open-coding on 33% of the data, generating an initial set of 30 distinct codes. The  
 795 coders then met to compare code applications, resolve discrepancies through negotiated agreement, and refine the  
 796 wording and boundaries of each code. Through several rounds of discussion, they reached full consensus on all coded  
 797 segments and consolidated the initial codes into a shared codebook. Using the refined codebook, the two authors  
 798 independently coded half of the remaining transcripts, meeting regularly to prevent coding drift and to determine  
 799 whether newly emerging codes should be incorporated. Ongoing constant comparison within and across interviews  
 800 was used to further refine relationships between codes. Finally, we clustered the codes into four higher-level themes  
 801 that map onto our design goals. The final codebook is shown in Appendix A.6.  
 802

803 Second, interaction data were analyzed through structured video coding by two authors to quantify tool usage  
 804 frequency and modality switching events, and researchers aligned them with system logs on an event-by-event basis.  
 805 Finally, for survey measures, we conducted paired-sample t-tests under the assumptions of normality and homogeneity  
 806 of variance. When assumptions were violated, we used the Wilcoxon signed-rank test. Given the sample size limitations,  
 807 we treat these quantitative results as descriptive signals intended to triangulate with and support the qualitative themes.  
 808

## 809 6 Study Results

### 810 6.1 The Usability of Vistoria

811 To address RQ1 and RQ2, we analyzed how participants engaged with the designed instrumental operations (*lasso*,  
 812 *collage*, *perspective shift*, and *filter*) and the usage patterns. In addition, we incorporated quantitative survey results with  
 813 qualitative data to assess how Vistoria affected participants' workload.  
 814

#### 815 6.1.1 The Usefulness of Instrumental Operations.

816 *Lasso as a granularity controller for local-to-global rewriting.* The *Lasso* instrument is valued for enabling participants  
 817 to zoom between different narrative scales. P8 emphasized, “*You can write in different scales, especially when you use the*  
 818 *Lasso tool, in which you can extract out that specific detail, so [the story] generated in the card is more heterogeneous on the*  
 819 *specific point.*” (Figure 6 (c)) This reflects how the lasso instrument potentially enables a narrative “zoom” functionality,  
 820 allowing participants to switch between macro-level story development and micro-level detail refinement within a  
 821 single interface. Similarly, P9 and P11 described how the lasso enabled them to refine specific text and emphasize key  
 822 points with more focused attention. In this way, the *Lasso* operates as a narrative instrument, turning macro-level edits  
 823 into micro-level adjustments while preserving precision, enabling rollback, and sustaining fluent exploration.  
 824

|     |                          | Vistoria             |       | Baseline |       | Statistics |        |    |
|-----|--------------------------|----------------------|-------|----------|-------|------------|--------|----|
|     |                          | mean                 | std   | mean     | std   | p          | Sig.   |    |
| 833 | NASA-TLX                 | Mental               | 5.16  | 1.528    | 3.167 | 1.337      | 0.0000 | ** |
|     |                          | Physical             | 4.667 | 1.723    | 2.083 | 0.669      | 0.0002 | ** |
|     |                          | Temporal             | 2.917 | 1.443    | 2.750 | 1.215      | 0.7723 | -  |
|     |                          | Effort               | 4.083 | 1.443    | 3.500 | 1.834      | 0.3388 | -  |
|     |                          | Performance          | 5.250 | 1.712    | 5.083 | 1.564      | 0.7986 | -  |
|     |                          | Frustration          | 2.750 | 1.183    | 1.750 | 0.622      | 0.0204 | *  |
| 843 | Creativity Support Index | Exploration          | 4.917 | 1.240    | 4.750 | 1.485      | 0.7126 | -  |
|     |                          | Expressiveness       | 6.083 | 0.996    | 4.333 | 1.775      | 0.0232 | *  |
|     |                          | Immersion            | 4.917 | 1.505    | 2.750 | 1.545      | 0.0006 | ** |
|     |                          | Enjoyment            | 5.333 | 1.435    | 4.917 | 1.379      | 0.1753 | -  |
|     |                          | Results Worth Effort | 5.250 | 1.357    | 5.583 | 0.793      | 0.5166 | -  |
|     |                          | Collaboration        | 5.500 | 0.674    | 4.583 | 1.505      | 0.0418 | *  |

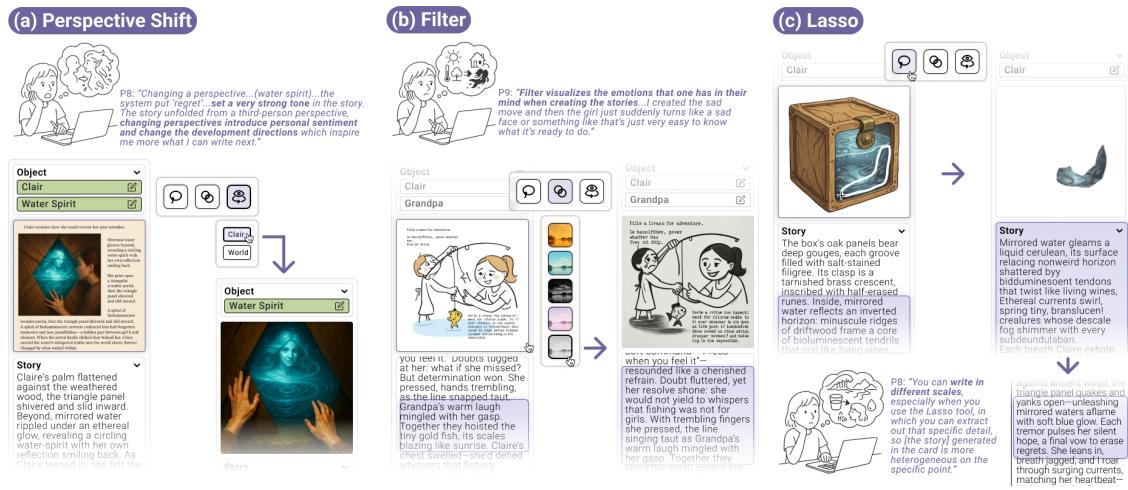

Table 1. Comparison of survey results: Vistoria vs. Baseline. Sig.: \*  $p < .05$ ; \*\*  $p < .01$ 

Fig. 6. (a) **Perspective Shift** changes the image viewpoint also reframe narrative voice and redirected story development; (b) **Filter** synchronizes mood and style across media—applying a visual filter also rewrites the associated text to match the intended emotional tone, ensuring stylistic coherence; (c) **Lasso** enables participants to focus at different narrative scales by extracting or isolating elements to steer local and global edits.

**Collage Function Enables Creative Recombination.** All participants used collage to merge extracted objects or scenes from different images, building connections across disparate elements. For instance, when P6 generated a scene of Maya entering a castle, he envisioned a larger structure with taller stairs. He sketched a bigger castle and mountain while expressing his intention through text, resulting in a generated card that matched his vision and was directly incorporated into his story. P11 articulated the creative freedom this technique provided: *“This technique doesn’t limit me; I can create abstract or non-abstract sketches, and I can incorporate whatever I want.”* (Figure 7) This multimodal recomposition enabled participants to quickly express envisioned scenes (P2) and provided “more freedom to envision

and create the story" (P10). These practices highlight that collage is not merely a usability feature but a catalyst for multimodal recomposition, enabling participants to externalize, reconfigure, and expand their mental imagery into coherent narrative possibilities that text or images alone could not achieve.

*Perspective Shift as a narrative frame-shifter.* The Perspective Shift alters both the image and the story perspective to provide new direction for story development. P8 described how shifting perspectives changed the story direction: “*Adopting the water’s viewpoint anthropomorphized the water spirit and introduced a regretful undertone that established the story’s emotional framework ... changed the development direction, inspiring new writing possibilities.*” P5 also experimented with this feature, incorporating a first-person voice (“*I didn’t expect this to be so heavy!*”) adopted from the system-generated segments into her third-person story (Figure 6 (a)). Perspective Shift allowed participants to flexibly reconfigure narrative viewpoint and voice, surfacing new emotional framings and redirecting story trajectories without disrupting their ongoing writing flow.

*Filter as affective parameterization for tone alignment.* The Filter instrument shaped narrative emotion and tone by visually parameterizing affect. P11 noted, “*The image provides the style, which influences my story’s tone and direction... Before using the filter, I can’t determine tone from text alone—I need to choose between suspenseful or romantic expression ways. However, visual changes after applying a filter help me decide which feeling I want my text to have.*” Similarly, P9 observed, “*Filter visualizes the emotions in my mind when creating stories... I created a sad mood with filters, and the girl suddenly turned into a sad face. It’s very easy to see what it’s doing and easy for me to describe later.*” (Figure 6 (b)). The immediate visual feedback aligned emotional intent with text, streamlining tone-setting decisions to evaluate the usability.s.

Taken together, these instrumental operations transformed localized operations into meaningful viewpoints, scales, and tones. They appear to support participants' intended operational precision and expressiveness, while potentially reinforcing the perception-action loop during the planning and translating of story writing.

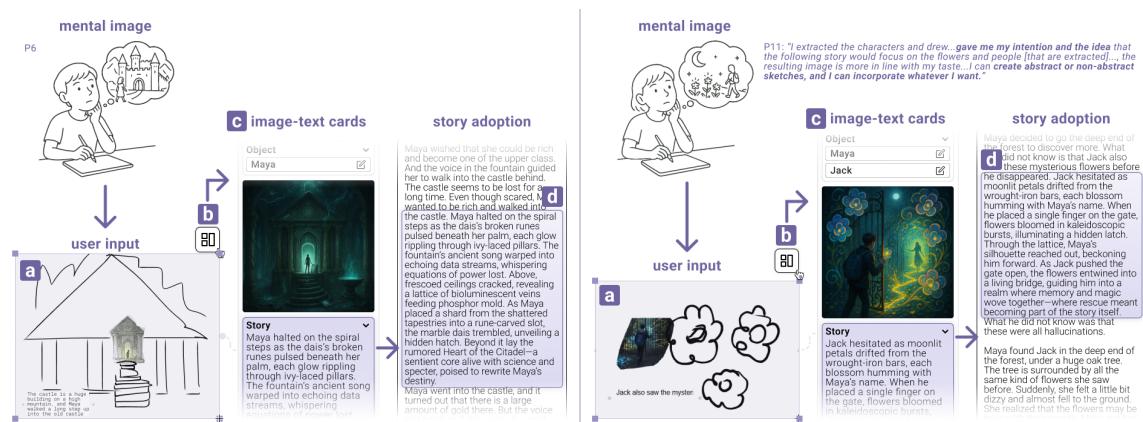



Fig. 7. Collage. Participants used Collage for creative recombination, merging extracted objects/scenes (often mixing sketches with images) to specify visualization and advance story ideas; usability was positively rated.

### 6.1.2 Tradeoffs of Multimodal Text-Image Co-editing

Manuscript submitted to ACM

*Increased Workload.* While image–text co-editing may support aspects of narrative coherence and expressiveness, our results suggest that it can also introduce additional workload. NASA–TLX scores showed significantly higher mental demand (NASA–TLX:  $M_{\text{Vistoria}} = 5.16$  vs.  $M_{\text{baseline}} = 3.17$ ,  $p=.0000$ ; Table 1) and physical demand (NASA–TLX:  $M_{\text{Vistoria}} = 4.67$  vs.  $M_{\text{baseline}} = 2.08$ ,  $p=.0002$ ; Table 1), plus moderately higher frustration (NASA–TLX:  $M_{\text{Vistoria}} = 2.75$  vs.  $M_{\text{baseline}} = 1.75$ ,  $p=.0204$ ; Table 1). Qualitative analysis reveals that this increased workload reflected the higher cognitive and physical effort of coordinating across modalities and actively curating outputs compared with the GPT baseline, which involves entering text prompts and receiving output directly. Part of the mental load may have stemmed from first-time use—learning new image/text operations and switching between modalities (P1, P2, P5, P9, P10). As P2 suggested, “*The biggest burden is switching between tools to sketch or type; it takes time to learn and adapt, even though the functions are useful.*” Additional difficulty also arose from unfamiliarity with the canvas interface compared with the traditional GPT interface (P3, P10).

*The Cognitive Effort of Enhanced Sense of Agency.* Nine of the participants valued the ability to maintain control of the story, and the creation process gave them a stronger sense of agency (all participants except P2, P7, and P12), and participants felt that they were directing the story’s development—the final narrative emerged from their own sketches, inputs, and use of the system’s instrumental operations (P4, P6, P10). However, P1, P3, P9, and P10 noted that they had to actively develop details within their own text, especially at the early stages, which could feel “a little bit frustrating” (P9). Unlike GPT, which could quickly produce long passages or propose questions to guide brainstorming (P10), the system requires participants to supply and elaborate on their own ideas before meaningful generation occurs, potentially leading to a higher mental workload. This shift demanded more cognitive and physical effort: even though sketching and annotation helped externalize mental imagery, participants noted that it felt more demanding than simply inputting and receiving GPT’s ready-made text (P1, P2, P11). Thus, a stronger sense of agency may come at the cost of a higher workload.

*Validating Ideas Rather than Generating Them.* Some participants noted that the system’s strengths lay in validating or expanding existing concrete mental images rather than generating new and abstract directions (P1, P11). As P1 explained, “*when I have a vague impression in my mind, I tend to generate some image-text pairs. But sometimes, once the visual appears, it fixes my imagination in a certain way in my mind, and I can no longer imagine other possibilities. In contrast, only plain text can inspire limitless imagination.*” This reveals a tension: images act as concrete anchors that aid detailed development, yet their representational specificity can induce fixation by prematurely crystallizing fuzzy concepts and narrowing exploration. Similarly, P10 noted that the baseline GPT condition was superior at breaking down initial story points and directly provide additional suggestions and directions, whereas the Vistoria system primarily served to elaborate or diverge from existing visions the user already has. This suggests this multimodal approach may be valuable for participants with partially formed concepts, though potentially less helpful during the open-ended phases of ideation when abstract exploration is more important than visual specificity.

*Externalization Frees Cognitive Space.* Although participants reported experiencing higher mental workload, several accounts suggest that multimodality may have supported a more efficient allocation of attention. According to participants, the image–text pairs helped externalize fleeting ideas, preserved sensory and spatial detail, and reduced information loss when translating imagination into concrete artifacts (P4, P7). As P7 described, “*By highlighting and collaging, I externalized formed ideas into image–text pairs, clearing mental space to pre-plan the next line and concentrate on the next plot beat.*” Taken together, these accounts indicate that while Vistoria demands more decision-making effort, it also enables a degree of cognitive offloading that shifted attention away from low-level memory maintenance toward

higher-level creative synthesis. With greater familiarity, such offloading could potentially yield efficiency benefits that offset the initial overhead.

## 6.2 Creativity Support of Vistoria

To address RQ3 and RQ4, we examine how Vistoria supports intention expression through multimodal input, facilitates the ideation process through divergent exploration, as well as how image–text alignment design contributes to narrative development. We also describe how this workflow potentially enhances participants' sense of agency and ownership.

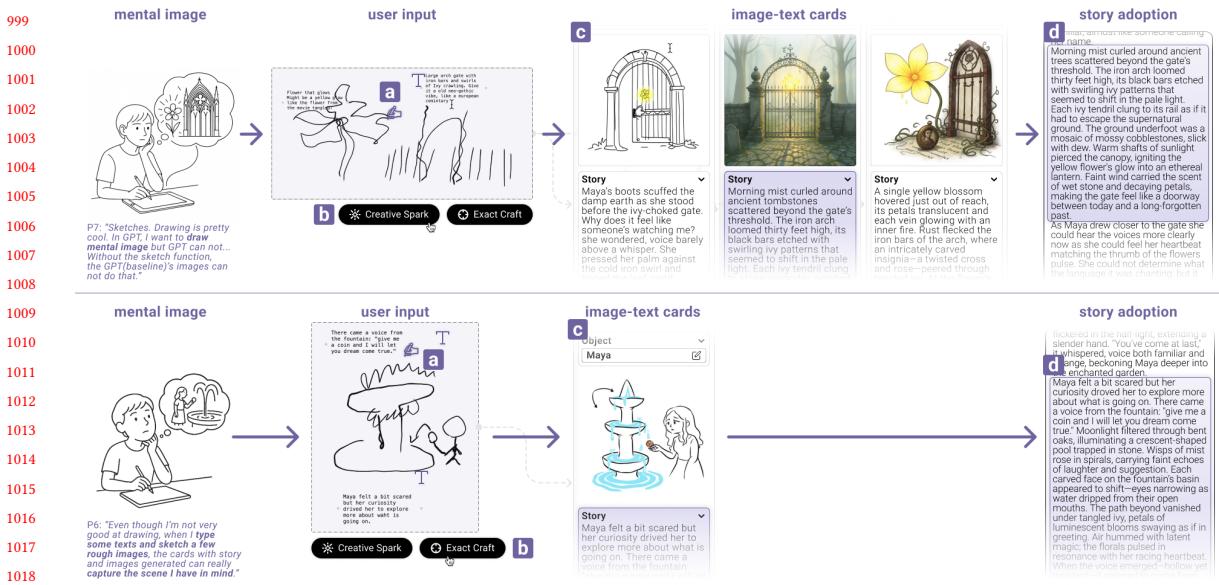



Fig. 8. Multimodal Expression. Example where sketch structure and textual details jointly yield multiple relevant images; participants valued sketches for visualizing spatial layout beyond what text-only tools could provide.

**6.2.1 Enhancing Intent Expression Through Multimodal Input.** As shown in Appendix Figure 12 (b), text served as the primary medium for generation but was consistently supplemented with sketches and images to provide more spatial information. Eight participants (P1, P2, P3, P6, P7, P9, P10, P11) stressed that combining sketches with text and images aligned outputs more closely with their creative intentions, yielding significantly higher expressiveness ratings than the baseline ( $M_{Vistoria} = 6.08$  vs.  $M_{Baseline} = 4.33$ ,  $p = .023$ ; Table 1).

P6 captured this benefit: *“Even though I’m not very good at drawing, when I type some texts and sketch a few rough images, the cards with story and images generated can really capture the scene I have in mind.”* P7 illustrated this with a concrete case: she sketched a rough flower and archway, then added text specifying a glowing flower and a Gothic gate. The system fused the spatial layout from the sketch with textual details to generate multiple fitting images. She highlighted the unique value of sketching: *“Drawing is pretty cool. In GPT, I want to draw a mental image, but GPT cannot... the geometry of GPT-generated image is always different from what’s in my head.”* (Figure 8). This suggests that multimodal expression enabled participants to externalize their mental imagery and refine it into concrete, shareable representations, bridging the gap between vague internal visions and precise outputs.

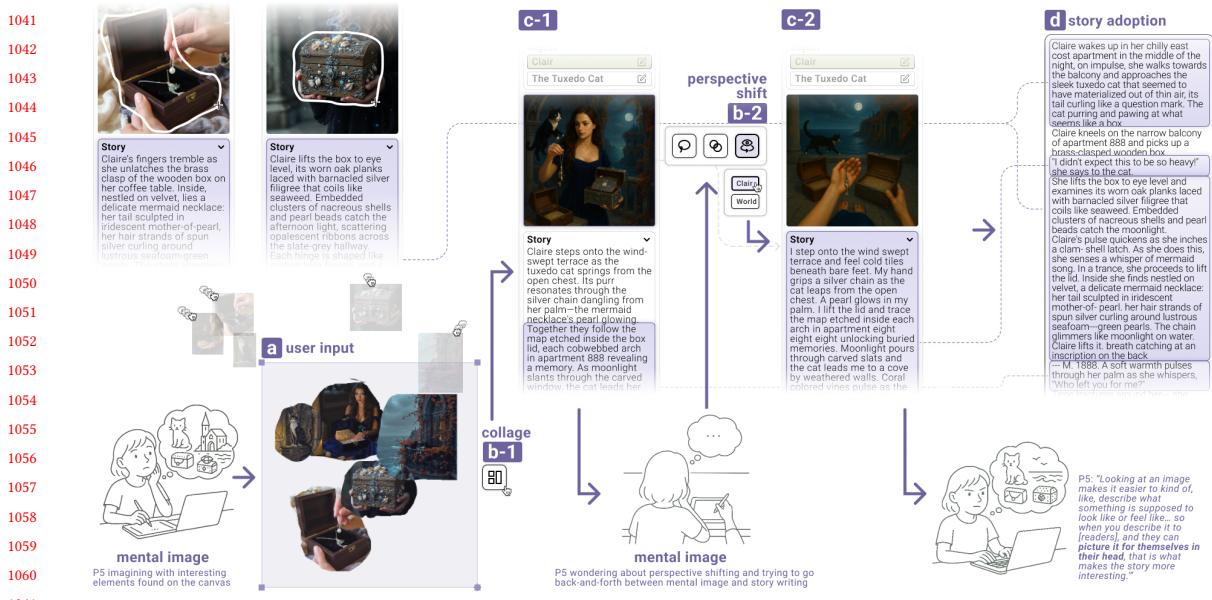



Fig. 9. Images act as cognitive scaffolds, helping participants describe unfamiliar actions or contexts more concretely. P5 constructed her final writing by referring to both images and adopting and editing related text.

**6.2.2 Bottom-up Creation to Support Divergent Exploration.** As shown in Appendix Figure 11 and Appendix Table 3, participants demonstrated greater breadth and depth of exploration using Vistoria and produced visibly more divergent narrative structures compared to the linear outputs of the GPT baseline.

The Vistoria canvas functioned as an exploratory space where participants pursued multiple storylines in parallel without linear constraints. The exploratory nature of Vistoria was also described as playful and enjoyable (P1, P7). As P1 reflected: *“Using the tool feels more like doing collage or drawing on a whiteboard or a large sheet of paper, where you can do almost anything—it’s very free and interesting.”* This experiential quality aligns with the higher immersion reported for Vistoria compared to the baseline (CSI:  $M_{Vistoria} = 4.92$  vs.  $M_{Baseline} = 2.75$ ,  $p = .0006$ ; Table 1).

Rather than committing immediately to single narratives, participants typically generated multiple alternatives in early phases, positioning the system as an expressive medium rather than merely a text generator (P7, P4, P5, P8). This exploratory approach helped participants avoid early fixation and sustained creative engagement. As P8 observed: *“GPT workflow is more streamlined... top-down. Using the system feels more bottom-up. You are open to possibilities, and then you choose one way to go deep, so there’s not a finite result and more possibilities being explored.”*

**6.2.3 Leveraging Image-Text Alignment for Rich Descriptions and Story Progression.** When text and images appear together, the two modalities reinforce one another, enabling unfamiliar or imagined elements to be both visualized and verbalized. This cross-modal grounding supports the production of more detailed and enriched descriptions. Visual references, in particular, helped participants imagine actions or settings beyond their lived experience. P5 also noted, *“Looking at an image makes it easier to kind of, like, describe what something is supposed to look like or feel like... so when you describe it to [readers], and they can picture it for themselves in their head, that is what makes the story more interesting.”* From observation, P5 closely described the scene with the cliff, the necklace, and the cat in the image in her

writing and directly adopted some text generated, integrating them into her final story (Figure 9). Using the generated text and image helped produce more concrete, detailed narratives. For example, P1 used visual cues from an image showing Claire touching a letter and adopted the descriptions in the text, such as “*Claire steadies the box on her lap*” and created the narrative “*She runs her fingers over the letters, heartbeats echoing in her ears.*” to form his final story (Figure 10). Here, the text description with visualization allowed P1 to capture more dynamic, sensory-rich narrative moments.

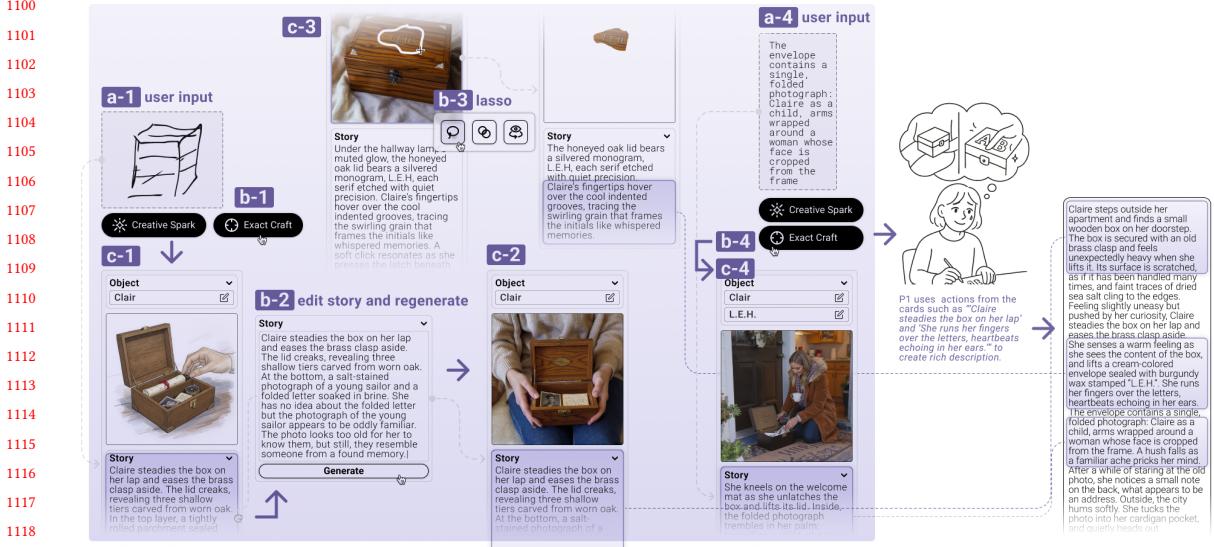



Fig. 10. Visual-to-text translation: participants turn visual cues into vivid prose that readers can picture; sample lines show how P1 used sensory-rich descriptions derived from an image-text pair.

Furthermore, unlike traditional workflows where participants must read through text to review their progress, these image-text pairs also facilitate easier tracking of story development and reduce idea drift or loss (P12, P11, P2). P12 noted that visuals alongside text helped maintain the mood and recall earlier ideas. P2 further described how the visual sequence supported planning: “*Using the system, we started with an initial image and then came up with another image... seeing the visual sequence made it easy to trace the development of the story. If you get too far down that chain and don't like it, you can just delete that node and go in a different direction. I liked visually being able to see the progress from generation to generation.*” Having images presented alongside text also helped participants manage the development of their narratives and better understand where the story should go next.

**6.2.4 Preserving Sense of Agency and Ownership.** Unlike the baseline, where participants often felt like they were editors of GPT-generated text, Vistoria supported exploratory editing while preserving a sense of agency. Participants felt that Vistoria “having more sense of mastery over the content,” in contrast to the baseline (P4, P6, P9). P7 felt that when using Vistoria, she was actively cutting, combining, filtering, and directing the story’s trajectory, whereas with GPT, she was mostly receiving and editing what the model produced. P9 explicitly emphasized a heightened sense of agency, noting: “*This tool is more ‘me’... I control characters and plots.*”

Dissatisfied the baseline condition, in which GPT produced most of the content and left participants primarily in the role of adopting it (P4, P6, P7), P10 also characterized Vistoria as a supportive co-pilot rather than a substitute for

1145 their own work. Quantitative results are consistent with these perceptions: participants rated Vistoria as providing a  
1146 stronger collaborative experience than the baseline (CSI:  $M_{Vistoria} = 5.50$  vs.  $M_{Baseline} = 4.58$ ,  $p = .0418$ ; Table 1), which  
1147 participants interpreted as a ‘co-pilot’ relationship that preserved their sense of agency.  
1148

1149 This preserved sense of agency also led to the preserved sense of ownership. GPT outputs in the baseline condition  
1150 were repeatedly described as “surface-level” (P2, P5, P7) and as “someone else’s work” (P3), whereas most participants  
1151 reported a stronger sense of ownership with Vistoria (P1, P2, P3, P4, P5, P6, P8, P9, P10, P11). As P5 explained: “*When*  
1152 *using Vistoria, every idea originated from my own imagination, and the final story was formed by manipulating and*  
1153 *combining these different self-generated ideas. This gave me a strong sense that the story was truly my own creation.*”  
1154

1155 Together, these findings suggest a shift from passively adopting model suggestions to actively creating and curating  
1156 one’s own generative outputs.  
1157

## 1158 7 Discussion

### 1159 7.1 Multimodal Instrumental Interaction

1160 Instrumental Interaction [6] conceptualizes instruments as mediators that translate writers’ actions into operations on  
1161 domain objects. We operationalize this principle by reifying a set of multimodal instrumental operations (Collage, Lasso,  
1162 Filter, and Perspective Shift) that simultaneously act upon both text and image narrative materials. Rather than treating  
1163 images and text as separate interface elements, these instruments serve as unified interactional units that enable writers  
1164 to zoom between narrative scales, reorganize multimodal story fragments, and explore divergent directions within a  
1165 shared representational space to edit image and text simultaneously.  
1166

1167 From the perspective of *Designing Interaction, not Interfaces* [7], our design moves away from adding more interface  
1168 widgets and focuses instead on shaping the quality of writers’ ongoing activity. Beaudouin-Lafon argues that trans-  
1169 formative interfaces must shift attention from surface-level user-interface (UI) components toward the underlying  
1170 interactional structures that support creative work [7]. Following this perspective and Dual Coding Theory’s suggestions  
1171 for verbal and nonverbal perception alignment [20], Vistoria’s design prioritizes fluid transitions between modalities,  
1172 persistent manipulable artifacts, and an iterative loop in which narrative ideas and multimodal materials co-evolve.  
1173 This interaction-centered framing explains why writers perceived the system as increasing expressiveness.  
1174

1175 Although participants generally found the instruments effective, they also reported a substantial learning curve. For  
1176 novice system users, the system imposed considerable mental and physical workload. These insights suggest future  
1177 design opportunities to lower workload and adapt to writers’ evolving needs. In the early stages of system use, writers  
1178 could express their intentions through natural language, allowing the system to suggest the most appropriate functions  
1179 on their behalf [10]. As writers become more familiar with the system, they can choose functions by themselves and even  
1180 define customized functions that better fit their evolving needs. This approach aligns with the emphasis on supporting  
1181 diverse, situated practices rather than enforcing a fixed interface vocabulary [7]. Together, these directions point toward  
1182 a design space where multimodal creativity systems integrate explicit instruments with adaptive, activity-centered  
1183 interaction models to better support real-world writing workflows.  
1184

### 1185 7.2 Designing Mixed-Initiative Multimodal Workflows

1186 In the traditional turn-based GPT workflow, users often occupy a relatively passive or evaluative role: they receive model  
1187 output and act primarily as examiners who check, accept, or correct the result [41]. In our canvas setting, users actively  
1188 manipulate elements on the surface, decide which multimodal materials to combine, and select which operations to  
1189

1197 apply. From the perspective of the participants, Vistoria is not experienced as a detached “answer engine,” but as a  
 1198 co-pilot collaborator. Users perceive themselves as those who decide how to create, what to keep, and which tools to  
 1199 invoke, preserving the sense of agency and ownership.  
 1200

1201 However, this also brings cognitive effort. Precisely because the workflow is instrument and manipulation-driven, it  
 1202 demands that writers have a clearer sense of what they need, or at least which direction they wish to explore. When  
 1203 writers do not yet know what they want, the system requires them to specify intentions, choose operations that tend  
 1204 to lead to higher cognitive load. In contrast, a text-only GPT chat enables the rapid generation of a large amount of  
 1205 content, allowing for subsequent refinement through iterative prompting and selection to achieve a specific focus.  
 1206 Several participants, therefore, viewed our system as especially suitable when they already had some ideas or a tentative  
 1207 direction, rather than when they were starting from a completely blank slate.  
 1208

1209 This inspires us to design a mixed-initiative paradigm to enable smooth transitions between model-led and user-led  
 1210 modes to accommodate different control [35]. When writers lack a clear direction, the system should allow temporary  
 1211 shifts toward more GPT-like exploration, for example, generating diverse suggestions or story seeds that can then  
 1212 be brought back onto the canvas for instrumental refinement. It could also offer low-commitment ways to switch  
 1213 modalities; when intentions are clearer, it should allow more user autonomy, like fine-grained instrumental operations  
 1214 for precise control. Furthermore, supporting mixed-initiative involves more than simply adding a model-led mode; it  
 1215 also requires careful design of how and when transitions between user-led and model-led states occur. This suggests  
 1216 designing meta-instruments that regulate the division of labor between user and model. For example, asking the model  
 1217 to complete only a local fragment suggests possible next scenes based on existing user input. These mechanisms could  
 1218 also build on existing instrumental operations. For example, when writers use the Collage function, they can request the  
 1219 model to recommend collage direction, and useful elements potentially can be involved based on the existing writer’s  
 1220 intention to realize a true collaborative activation of ideas and shared cognition between the writer and the model. In  
 1221 this framing, mixed-initiative becomes an additional layer of instrumental interaction that allows users to explicitly  
 1222 shape who drives which parts of the creative process.  
 1223

### 1224 7.3 Limitation and Future Work

1225 While our study provides valuable insights into multimodal story writing, several limitations constrain the generalizability  
 1226 and scope of our findings.  
 1227

1228 *Task Scope and Short-Term Focus.* The 300–500-word story task, while manageable for controlled evaluation, does  
 1229 not reflect the demands of long-form fictional writing, where authors build sustained voices, complex arcs, and intricate  
 1230 structures. We also did not have an opportunity to study Vistoria’s suitability for extended projects, iterative revisions,  
 1231 or complex narratives, leaving open questions on the consistency in long works, scalability with larger volumes, or  
 1232 risks of over-reliance on LLM over time of use. Moreover, evaluation relied primarily on self-reports of creativity and  
 1233 user experience; we did not include objective measures of story quality, originality, or literary merit.  
 1234

1235 In the future, we plan to conduct field studies that deploy this system with writers of varying expertise levels in their  
 1236 authentic creative contexts, observing how they integrate the tool into real writing projects over extended periods.  
 1237 Such longitudinal research would assess the ecological validity of Vistoria and provide insights into how writers adapt  
 1238 Vistoria for planning and translating across longer creative cycles [50]. We anticipate that writers might spontaneously  
 1239 capture inspirational moments from daily life, potentially increasing their reliance on clustering functionality as they  
 1240 generate more dispersed content fragments that require organization. These naturalistic studies would provide crucial  
 1241

1249 insights into the tool’s role in sustained creative practice, revealing usage patterns, adaptation strategies, and long-term  
1250 impacts on writers’ creative processes that controlled laboratory settings cannot capture.

1251 *Participant Sample.* Our study involved only 12 participants, while this is typical for similar lab usability studies, a  
1252 larger group could provide stronger statistical power, reveal more varied interaction patterns, and allow comparisons  
1253 across subgroups. Furthermore, the group of participants has limited cultural and age diversity, which could have  
1254 narrowed the range of narrative traditions, writing styles, and storytelling approaches represented. Future research  
1255 should address these limitations by recruiting a larger and more diverse set of participants, including writers of various  
1256 ages and individuals from diverse cultural backgrounds, to more fully evaluate the applicability and generalizability of  
1257 the system.

1258 *Construct Validity and Measurement Limitations.* Although we discuss constructs such as creativity, sense of ownership,  
1259 and agency, these observations arise primarily from qualitative reports. Our study does not include construct-grounded  
1260 measurements or comparative baselines for these phenomena. Accordingly, the interpretations should be viewed as  
1261 exploratory insights rather than empirically validated effects. Future work will incorporate construct-aligned measures  
1262 and validated scales such as the Mixed-Initiative CSI [42] situated within human–AI co-creativity frameworks.

1263 *Multimodality Scope.* Our work focuses on multimodal support through text and images, but does not include other  
1264 modalities. Prior research in creative writing suggests that audio can also serve as a useful medium [74], especially  
1265 through nonverbal sounds and ambient effects that help shape mood and atmosphere. In future work, we plan to explore  
1266 the addition of audio cues to the writing process. Such sound elements may support writers in building a stronger vibe,  
1267 enhancing scene-setting, and offering an additional channel for creative inspiration.

## 1273 8 Conclusion

1274 This paper presents Vistoria, a multimodal image–text co-editing system that supports fictional story writing by tightly  
1275 integrating image and text representations. Grounded in the WoZ co-design study, Vistoria introduces a unified set of  
1276 instrumental operations (lasso, collage, perspective shift, and filter) that reify writers’ intentions and enable synchronized  
1277 manipulation across modalities. Through a controlled user study, we demonstrate that multimodal co-editing enhances  
1278 expressiveness, immersion, and exploratory ideation. Although this multimodal workflow increases cognitive demand,  
1279 participants reported preserved senses of agency and ownership, treating the system as a creative partner rather than  
1280 a generative tool. We hope Vistoria highlights the opportunities for designing future writing systems that embrace  
1281 multimodality as a core mechanism for ideation and narrative development.

## 1301 References

1302 [1] Leonardo Angelini, Denis Lalanne, Elise Van den Hoven, Omar Abou Khaled, and Elena Mugellini. 2015. Move, hold and touch: a framework for  
1303 tangible gesture interactive systems. *Machines* 3, 3 (2015), 173–207.

1304 [2] Anthropic. 2024. Claude 3.5 Sonnet. <https://www.anthropic.com/news/clause-3-5-sonnet>. Claude 3.5 Sonnet large language model used via  
1305 <https://claude.ai>, June 2025..

1306 [3] Michael A Arbib. 1992. Schema theory. *The encyclopedia of artificial intelligence* 2 (1992), 1427–1443.

1307 [4] P Matthijs Bal and Martijn Veltkamp. 2013. How does fiction reading influence empathy? An experimental investigation on the role of emotional  
1308 transportation. *PloS one* 8, 1 (2013), e55341.

1309 [5] Lawrence W Barsalou. 2008. Grounded cognition. *Annu. Rev. Psychol.* 59, 1 (2008), 617–645.

1310 [6] Michel Beaudouin-Lafon. 2000. Instrumental interaction: an interaction model for designing post-WIMP user interfaces. In *Proceedings of the SIGCHI  
1311 Conference on Human Factors in Computing Systems* (The Hague, The Netherlands) (CHI '00). Association for Computing Machinery, New York, NY,  
1312 USA, 446–453. <https://doi.org/10.1145/332040.332473>

1313 [7] Michel Beaudouin-Lafon. 2004. Designing interaction, not interfaces. In *Proceedings of the Working Conference on Advanced Visual Interfaces  
1314 (Gallipoli, Italy)* (AVI '04). Association for Computing Machinery, New York, NY, USA, 15–22. <https://doi.org/10.1145/989863.989865>

1315 [8] Black Forest Labs. 2024. FLUX.1: Next-generation text-to-image diffusion models. <https://blf.ai/>. FLUX.1 diffusion model family (e.g., FLUX.1 [pro] /  
1316 [dev] / [schnell]) accessed via the Black Forest Labs API in August 2025..

1317 [9] Christopher Booker. 2004. *The seven basic plots: Why we tell stories*. A&C Black.

1318 [10] Samuelle Bourgault, Li-Yi Wei, Jennifer Jacobs, and Rubaiat Habib Kazi. 2025. Narrative Motion Blocks: Combining Direct Manipulation and Natural  
1319 Language Interactions for Animation Creation. In *Proceedings of the 2025 ACM Designing Interactive Systems Conference (DIS '25)*. Association for  
1320 Computing Machinery, New York, NY, USA, 1366–1386. <https://doi.org/10.1145/3715336.3735766>

1321 [11] Steven Brown and Eunseon Kim. 2021. The neural basis of creative production: A cross-modal ALE meta-analysis. *Open Psychology* 3, 1 (2021),  
1322 103–132.

1323 [12] Janet Burroway, Elizabeth Stuckey-French, and Ned Stuckey-French. 2022. *Writing fiction: A guide to narrative craft*. University of Chicago Press.

1324 [13] Tuhin Chakrabarty, Philippe Laban, Divyansh Agarwal, Smaranda Muresan, and Chien-Sheng Wu. 2024. Art or Artifice? Large Language Models  
1325 and the False Promise of Creativity. In *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems* (Honolulu, HI, USA) (CHI '24).  
1326 Association for Computing Machinery, New York, NY, USA, Article 30, 34 pages. <https://doi.org/10.1145/3613904.3642731>

1327 [14] Tuhin Chakrabarty, Vishakh Padmakumar, Faeze Brahman, and Smaranda Muresan. 2024. Creativity Support in the Age of Large Language Models:  
1328 An Empirical Study Involving Professional Writers. In *Proceedings of the 16th Conference on Creativity & Cognition* (Chicago, IL, USA) (CC '24).  
1329 Association for Computing Machinery, New York, NY, USA, 132–155. <https://doi.org/10.1145/3635636.3656201>

1330 [15] Erin Cherry and Celine Latulipe. 2014. Quantifying the creativity support of digital tools through the creativity support index. *ACM Transactions on  
1331 Computer-Human Interaction (TOCHI)* 21, 4 (2014), 1–25.

1332 [16] DaEun Choi, Sumin Hong, Jeongeon Park, John Joon Young Chung, and Juho Kim. 2024. CreativeConnect: Supporting Reference Recombination for  
1333 Graphic Design Ideation with Generative AI. In *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems* (Honolulu, HI, USA)  
1334 (CHI '24). Association for Computing Machinery, New York, NY, USA, Article 1055, 25 pages. <https://doi.org/10.1145/3613904.3642794>

1335 [17] John Joon Young Chung, Wooseok Kim, Kang Min Yoo, Hwaran Lee, Eytan Adar, and Minsuk Chang. 2022. TaleBrush: Sketching Stories with  
1336 Generative Pretrained Language Models. In *Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems* (New Orleans, LA, USA)  
1337 (CHI '22). Association for Computing Machinery, New York, NY, USA, Article 209, 19 pages. <https://doi.org/10.1145/3491102.3501819>

1338 [18] John Joon Young Chung and Max Kreminski. 2024. Patchview: LLM-powered Worldbuilding with Generative Dust and Magnet Visualization.  
1339 In *Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology* (Pittsburgh, PA, USA) (UIST '24). Association for  
1340 Computing Machinery, New York, NY, USA, Article 77, 19 pages. <https://doi.org/10.1145/3654777.3676352>

1341 [19] John Joon Young Chung, Melissa Roemmel, and Max Kreminski. 2025. Toyteller: AI-powered Visual Storytelling Through Toy-Playing with  
1342 Character Symbols. In *Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems* (CHI '25). Association for Computing  
1343 Machinery, New York, NY, USA, Article 331, 23 pages. <https://doi.org/10.1145/3706598.3713435>

1344 [20] James M Clark and Allan Paivio. 1991. Dual coding theory and education. *Educational psychology review* 3, 3 (1991), 149–210.

1345 [21] N. Dahlbäck, A. Jönsson, and L. Ahrenberg. 1993. Wizard of Oz studies – why and how. *Know.-Based Syst.* 6, 4 (Dec. 1993), 258–266. [https://doi.org/10.1016/0950-7051\(93\)90017-N](https://doi.org/10.1016/0950-7051(93)90017-N)

1346 [22] Hai Dang, Frederik Brudy, George Fitzmaurice, and Fraser Anderson. 2023. WorldSmith: Iterative and Expressive Prompting for World Building  
1347 with a Generative AI. In *Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology* (San Francisco, CA, USA) (UIST  
1348 '23). Association for Computing Machinery, New York, NY, USA, Article 63, 17 pages. <https://doi.org/10.1145/3586183.3606772>

1349 [23] Ali Darejeh, Nadine Marcusa, Gelareh Mohammadi, and John Sweller. 2024. A critical analysis of cognitive load measurement methods for  
1350 evaluating the usability of different types of interfaces: guidelines and framework for Human-Computer Interaction. arXiv:2402.11820 [cs.HC]  
1351 <https://arxiv.org/abs/2402.11820>

1352 [24] Anil R Doshi and Oliver P Hauser. 2024. Generative AI enhances individual creativity but reduces the collective diversity of novel content. *Science  
advances* 10, 28 (2024), eadn5290.

1353 [25] Charlotte L Doyle. 1998. The writer tells: The creative process in the writing of literary fiction. *Creativity Research Journal* 11, 1 (1998), 29–37.

1353 [26] Fiona Draxler, Anna Werner, Florian Lehmann, Matthias Hoppe, Albrecht Schmidt, Daniel Buschek, and Robin Welsch. 2024. The AI Ghostwriter  
 1354 Effect: When Users do not Perceive Ownership of AI-Generated Text but Self-Declare as Authors. *ACM Transactions on Computer-Human Interaction*  
 1355 31, 2 (April 2024), 1–40. <https://doi.org/10.1145/3637875>

1356 [27] Inc. Figma. 2025. *Figma: Collaborative Interface Design Tool*. <https://www.figma.com/> Homepage outlining Figma's design-, prototyping-,  
 1357 white-boarding, presentation tools and AI features.

1358 [28] Linda Flower and John R Hayes. 1981. A cognitive process theory of writing. *College Composition & Communication* 32, 4 (1981), 365–387.

1359 [29] Gérard Genette. 1980. *Narrative discourse: An essay in method*. Vol. 3. Cornell University Press.

1360 [30] Katy Gero, Alex Calderwood, Charlotte Li, and Lydia Chilton. 2022. A Design Space for Writing Support Tools Using a Cognitive Process Model  
 1361 of Writing. In *Proceedings of the First Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2022)*. Association for Computational  
 1362 Linguistics, Dublin, Ireland, 11–24. <https://doi.org/10.18653/v1/2022.in2writing-1.2>

1363 [31] Katy Ilonka Gero, Tao Long, and Lydia B Chilton. 2023. Social Dynamics of AI Support in Creative Writing. In *Proceedings of the 2023 CHI Conference  
 1364 on Human Factors in Computing Systems* (Hamburg, Germany) (CHI '23). Association for Computing Machinery, New York, NY, USA, Article 245,  
 1365 15 pages. <https://doi.org/10.1145/3544548.3580782>

1366 [32] Melanie C Green and Timothy C Brock. 2000. The role of transportation in the persuasiveness of public narratives. *Journal of personality and social  
 1367 psychology* 79, 5 (2000), 701.

1368 [33] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In  
 1369 *Advances in psychology*. Vol. 52. Elsevier, 139–183.

1370 [34] Jessica He, Stephanie Houde, and Justin D. Weisz. 2025. Which Contributions Deserve Credit? Perceptions of Attribution in Human-AI Co-Creation.  
 1371 In *Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems* (CHI '25). Association for Computing Machinery, New York, NY,  
 1372 USA, Article 540, 18 pages. <https://doi.org/10.1145/3706598.3713522>

1373 [35] Eric Horvitz. 1999. Principles of mixed-initiative user interfaces. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*  
 1374 (Pittsburgh, Pennsylvania, USA) (CHI '99). Association for Computing Machinery, New York, NY, USA, 159–166. <https://doi.org/10.1145/302979.303030>

1375 [36] Wei Huang, Pengfei Yang, Ying Tang, Fan Qin, Hengjiang Li, Diwei Wu, Wei Ren, Sizhuo Wang, Jingpeng Li, Yucheng Zhu, et al. 2024. From sight  
 1376 to insight: A multi-task approach with the visual language decoding model. *Information Fusion* 112 (2024), 102573.

1377 [37] Catherine Kanelloupolou, Katia Lida Kermanidis, and Andreas Giannakoulopoulos. 2019. The dual-coding and multimedia learning theories: Film  
 1378 subtitles as a vocabulary teaching tool. *Education Sciences* 9, 3 (2019), 210.

1379 [38] Suzanne Keen. 2007. *Empathy and the Novel*. Oxford University Press.

1380 [39] Robert E Kent. 2000. Conceptual knowledge markup language: An introduction. *Netnomics* 2, 2 (2000), 139–169.

1381 [40] David Kirsh. 2010. Thinking with external representations. *AI & society* 25, 4 (2010), 441–454.

1382 [41] Wai-Chung Kwan, Xingshan Zeng, Yuxin Jiang, Yufei Wang, Liangyou Li, Lifeng Shang, Xin Jiang, Qun Liu, and Kam-Fai Wong. 2024. Mt-eval: A  
 1383 multi-turn capabilities evaluation benchmark for large language models. *arXiv preprint arXiv:2401.16745* (2024).

1384 [42] Tomas Lawton, Francisco J Ibarrola, Dan Ventura, and Kazjon Grace. 2023. Drawing with Reframer: Emergence and Control in Co-Creativenbsp;AI.  
 1385 In *Proceedings of the 28th International Conference on Intelligent User Interfaces* (Sydney, NSW, Australia) (IUT '23). Association for Computing  
 1386 Machinery, New York, NY, USA, 264–277. <https://doi.org/10.1145/3581641.3584095>

1387 [43] Mina Lee, Katy Ilonka Gero, John Joon Young Chung, Simon Buckingham Shum, Vipul Raheja, Hua Shen, Subhashini Venugopalan, Thiemo  
 1388 Wambsganss, David Zhou, Emad A. Alghamdi, Tal August, Avinash Bhat, Madha Zahrah Choksi, Senjuti Dutta, Jin L.C. Guo, Md Naimul Hoque,  
 1389 Yewon Kim, Simon Knight, Seyed Parsa Neshaei, Antonette Shibani, Disha Shrivastava, Lila Shroff, Agnia Sergeyuk, Jessi Stark, Sarah Sterman,  
 1390 Sitong Wang, Antoine Bosselut, Daniel Buschek, Joseph Chee Chang, Sherol Chen, Max Kreminski, Joonsuk Park, Roy Pea, Eugenia Ha Rim Rho,  
 1391 Zejiang Shen, and Pao Siangliulue. 2024. A Design Space for Intelligent and Interactive Writing Assistants. In *Proceedings of the 2024 CHI Conference  
 1392 on Human Factors in Computing Systems* (Honolulu, HI, USA) (CHI '24). Association for Computing Machinery, New York, NY, USA, Article 1054,  
 1393 35 pages. <https://doi.org/10.1145/3613904.3642697>

1394 [44] Mina Lee, Katy Ilonka Gero, John Joon Young Chung, Simon Buckingham Shum, Vipul Raheja, Hua Shen, Subhashini Venugopalan, Thiemo  
 1395 Wambsganss, David Zhou, Emad A. Alghamdi, Tal August, Avinash Bhat, Madha Zahrah Choksi, Senjuti Dutta, Jin L.C. Guo, Md Naimul Hoque,  
 1396 Yewon Kim, Simon Knight, Seyed Parsa Neshaei, Antonette Shibani, Disha Shrivastava, Lila Shroff, Agnia Sergeyuk, Jessi Stark, Sarah Sterman,  
 1397 Sitong Wang, Antoine Bosselut, Daniel Buschek, Joseph Chee Chang, Sherol Chen, Max Kreminski, Joonsuk Park, Roy Pea, Eugenia Ha Rim Rho,  
 1398 Zejiang Shen, and Pao Siangliulue. 2024. A Design Space for Intelligent and Interactive Writing Assistants. In *Proceedings of the CHI Conference on  
 1399 Human Factors in Computing Systems*. ACM, Honolulu HI USA, 1–35. <https://doi.org/10.1145/3613904.3642625>

1400 [45] Roberto Legaspi, Zhengqi He, and Taro Toyoizumi. 2019. Synthetic agency: sense of agency in artificial intelligence. *Current Opinion in Behavioral  
 1401 Sciences* 29 (Oct. 2019), 84–90. <https://doi.org/10.1016/j.cobeha.2019.04.004>

1402 [46] Zhuoyan Li, Chen Liang, Jing Peng, and Ming Yin. 2024. The Value, Benefits, and Concerns of Generative AI-Powered Assistance in Writing. In  
 1403 *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems* (Honolulu, HI, USA) (CHI '24). Association for Computing Machinery,  
 1404 New York, NY, USA, Article 1048, 25 pages. <https://doi.org/10.1145/3613904.3642625>

1405 [47] David Chuan-En Lin, Hyeyoung B. Kang, Nikolas Martelaro, Aniket Kittur, Yan-Ying Chen, and Matthew K. Hong. 2025. Inkspire: Supporting Design  
 1406 Exploration with Generative AI through Analogical Sketching. In *Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems  
 1407 (CHI '25)*. Association for Computing Machinery, New York, NY, USA, Article 427, 18 pages. <https://doi.org/10.1145/3706598.3713397>

1405 [48] Long Ling, Xinyi Chen, Ruoyu Wen, Toby Jia-Jun Li, and RAY LC. 2024. Sketchar: Supporting Character Design and Illustration Prototyping Using  
1406 Generative AI. *Proc. ACM Hum.-Comput. Interact.* 8, CHI PLAY, Article 337 (Oct. 2024), 28 pages. <https://doi.org/10.1145/3677102>

1407 [49] Lydia Listyani. 2019. The Use of a Visual Image to Promote Narrative Writing Ability and Creativity. *Eurasian Journal of Educational Research* 80  
1408 (2019), 193–223.

1409 [50] Tao Long, Sitong Wang, Émilie Fabre, Tony Wang, Anup Sathya, Jason Wu, Savvas Dimitrios Petridis, Ding Li, Tuhin Chakrabarty, Yue Jiang, Jingyi  
1410 Li, Tiffany Tseng, Ken Nakagaki, Qian Yang, Nikolas Martelaro, Jeffrey V Nickerson, and Lydia B Chilton. 2025. Facilitating Longitudinal Interaction  
1411 Studies of AI Systems. In *Adjunct Proceedings of the 38th Annual ACM Symposium on User Interface Software and Technology (UIST Adjunct '25)*.  
1412 Association for Computing Machinery, New York, NY, USA, Article 13, 5 pages. <https://doi.org/10.1145/3746058.3758469>

1413 [51] Damien Masson. 2023. *Transforming the Reading Experience of Scientific Documents with Polymorphism*. Ph.D. Dissertation. University of Waterloo.

1414 [52] Damien Masson, Young-Ho Kim, and Fanny Chevalier. 2025. Textoshop: Interactions Inspired by Drawing Software to Facilitate Text Editing. In  
1415 *Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI '25)*. Association for Computing Machinery, New York, NY,  
1416 USA, Article 1087, 14 pages. <https://doi.org/10.1145/3706598.3713862>

1417 [53] Damien Masson, Zixin Zhao, and Fanny Chevalier. 2025. Visual Story-Writing: Writing by Manipulating Visual Representations of Stories. In  
1418 *Proceedings of the 38th Annual ACM Symposium on User Interface Software and Technology (UIST '25)*. Association for Computing Machinery, New  
1419 York, NY, USA, Article 70, 15 pages. <https://doi.org/10.1145/3746059.3747758>

1420 [54] John McCarthy, Paul Sullivan, and Peter Wright. 2006. Culture, personal experience and agency. *British Journal of Social Psychology* 45, 2 (2006),  
421–439. <https://doi.org/10.1348/014466605X49140> arXiv:<https://bpspsychub.onlinelibrary.wiley.com/doi/pdf/10.1348/014466605X49140>

1421 [55] Fanxu Meng, Haotong Yang, Yiding Wang, and Muhan Zhang. 2023. Chain of images for intuitively reasoning. *arXiv preprint arXiv:2311.09241*  
1422 (2023).

1423 [56] David S Miall and Don Kuiken. 1999. What is literariness? Three components of literary reading. *Discourse processes* 28, 2 (1999), 121–138.

1424 [57] Midjourney, Inc. 2024. *Midjourney (Image Generation System)*, Version 6.1. Text-to-image model Midjourney v6.1 (default model until June 16, 2025)  
1425 used via Midjourney web/Discord service, June 2025.

1426 [58] Miro. 2025. Miro – AI Innovation Workspace. <https://miro.com/>. Accessed: 2025-12-01.

1427 [59] Aditi Mishra, Frederik Brady, Qian Zhou, George Fitzmaurice, and Fraser Anderson. 2025. WhatIF: Branched Narrative Fiction Visualization  
1428 for Authoring Emergent Narratives using Large Language Models. In *Proceedings of the 2025 Conference on Creativity and Cognition (C&C '25)*.  
1429 Association for Computing Machinery, New York, NY, USA, 590–605. <https://doi.org/10.1145/3698061.3726933>

1430 [60] Caterina Moruzzi. 2022. Creative Agents: Rethinking Agency and Creativity in Human and Artificial Systems. *Journal of Aesthetics and Phenomenology*  
1431 9, 2 (July 2022), 245–268. <https://doi.org/10.1080/20539320.2022.2150470>

1432 [61] Cut Mukramah, Faisal Mustafa, and Diana Fauzia Sari. 2023. The Effect of Picture and Text Prompts on Idea Formulation and Organization of  
1433 Descriptive Text. *Indonesian Journal of English Language Teaching and Applied Linguistics* 7, 2 (2023), 325–341.

1434 [62] OpenAI. 2024. GPT-4o. Large multimodal model (GPT-4o; ChatGPT model ID chatgpt-4o-1latest) used via <https://chatgpt.com>, June 2025..

1435 [63] OpenAI. 2024. GPT-4o. <https://platform.openai.com/docs/models/gpt-4o>. Flagship multimodal model “GPT-4o”. Used via the OpenAI API with  
1436 model ID gpt-4o (and deployment aliases such as chatgpt-4o-1latest) in August 2025..

1437 [64] OpenAI. 2025. o4-mini. <https://platform.openai.com/docs/models>. OpenAI “o4-mini” model from the o-series. Used via the OpenAI API with model  
1438 ID o4-mini in August 2025..

1439 [65] Kyeongman Park, Minbeom Kim, and Kyomin Jung. 2024. A character-centric creative story generation via imagination. *arXiv preprint arXiv:2409.16667* (2024).

1440 [66] Hua Xuan Qin, Shan Jin, Ze Gao, Mingming Fan, and Pan Hui. 2024. CharacterMeet: Supporting Creative Writers’ Entire Story Character  
1441 Construction Processes Through Conversation with LLM-Powered Chatbot Avatars. In *Proceedings of the 2024 CHI Conference on Human Factors  
1442 in Computing Systems (Honolulu, HI, USA) (CHI '24)*. Association for Computing Machinery, New York, NY, USA, Article 1051, 19 pages. <https://doi.org/10.1145/3613904.3642105>

1443 [67] Anyi Rao, Jean-Péic Chou, and Maneesh Agrawala. 2024. ScriptViz: A Visualization Tool to Aid Scriptwriting based on a Large Movie Database.  
1444 In *Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology (Pittsburgh, PA, USA) (UIST '24)*. Association for  
1445 Computing Machinery, New York, NY, USA, Article 21, 13 pages. <https://doi.org/10.1145/3654777.3676402>

1446 [68] Abbas Ali Rezaee. 2011. Investigating the effect of using multiple sensory modes of glossing vocabulary items in a reading text with multimedia  
1447 annotations. *English Language Teaching* (2011).

1448 [69] Nathalie Riche, Anna Offenwanger, Frederic Gmeiner, David Brown, Hugo Romat, Michel Pahud, Nicolai Marquardt, Kori Inkpen, and Ken Hinckley.  
1449 2025. AI-Instruments: Embodying Prompts as Instruments to Abstract & Reflect Graphical Interface Commands as General-Purpose Tools. In  
1450 *Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI '25)*. Association for Computing Machinery, New York, NY,  
1451 USA, Article 1104, 18 pages. <https://doi.org/10.1145/3706598.3714259>

1452 [70] Karl Toby Rosenberg, Rubaiat Habib Kazi, Li-Yi Wei, Haijun Xia, and Ken Perlin. 2024. DrawTalking: Building Interactive Worlds by Sketching and  
1453 Speaking. In *Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology (Pittsburgh, PA, USA) (UIST '24)*. Association  
1454 for Computing Machinery, New York, NY, USA, Article 76, 25 pages. <https://doi.org/10.1145/3654777.3676334>

1455 [71] Elizabeth B-N Sanders and Pieter Jan Stappers. 2008. Co-creation and the new landscapes of design. *Co-design* 4, 1 (2008), 5–18.

1456 [72] Xinyu Shi, Yinghou Wang, Ryan Rossi, and Jian Zhao. 2025. Brickify: Enabling Expressive Design Intent Specification through Direct Manipulation  
1457 on Design Tokens. In *Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI '25)*. Association for Computing Machinery,  
1458 Manuscript submitted to ACM

1457 New York, NY, USA, Article 424, 20 pages. <https://doi.org/10.1145/3706598.3714087>

1458 [73] Nikhil Singh, Guillermo Bernal, Daria Savchenko, and Elena L. Glassman. 2023. Where to Hide a Stolen Elephant: Leaps in Creative Writing with  
1459 Multimodal Machine Intelligence. *ACM Trans. Comput.-Hum. Interact.* 30, 5, Article 68 (Sept. 2023), 57 pages. <https://doi.org/10.1145/3511599>

1460 [74] Nikhil Singh, Guillermo Bernal, Daria Savchenko, and Elena L. Glassman. 2023. Where to Hide a Stolen Elephant: Leaps in Creative Writing with  
1461 Multimodal Machine Intelligence. *ACM Trans. Comput.-Hum. Interact.* 30, 5 (Sept. 2023), 68:1–68:57. <https://doi.org/10.1145/3511599>

1462 [75] Sangho Suh, Meng Chen, Bryan Min, Toby Jia-Jun Li, and Haijun Xia. 2024. Luminate: Structured Generation and Exploration of Design Space with  
1463 Large Language Models for Human-AI Co-Creation. In *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems* (Honolulu,  
1464 HI, USA) (CHI '24). Association for Computing Machinery, New York, NY, USA, Article 644, 26 pages. <https://doi.org/10.1145/3613904.3642400>

1465 [76] Sangho Suh, Michael Lai, Kevin Pu, Steven P. Dow, and Tovi Grossman. 2025. StoryEnsemble: Enabling Dynamic Exploration & Iteration in the  
1466 Design Process with AI and Forward-Backward Propagation. In *Proceedings of the 38th Annual ACM Symposium on User Interface Software and  
1467 Technology (UIST '25)*. Association for Computing Machinery, New York, NY, USA, Article 203, 36 pages. <https://doi.org/10.1145/3746059.3747772>

1468 [77] Robert Thornberg. 2012. Informed grounded theory. *Scandinavian journal of educational research* 56, 3 (2012), 243–259.

1469 [78] Kirsikka Vaajakallio and Tuuli Mattelmäki. 2014. Design games in codesign: as a tool, a mindset and a structure. *CoDesign* 10, 1 (2014), 63–77.

1470 [79] Wen-Fan Wang, Chien-Ting Lu, Nil Ponsa i Campanyà, Bing-Yu Chen, and Mike Y. Chen. 2025. Aldeation: Designing a Human-AI Collaborative  
1471 Ideation System for Concept Designers. In *Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI '25)*. Association for  
1472 Computing Machinery, New York, NY, USA, Article 21, 28 pages. <https://doi.org/10.1145/3706598.3714148>

1473 [80] Xiyuan Wang, Yi-Fan Cao, Junjie Xiong, Sizhe Chen, Wenxuan Li, Junjie Zhang, and Quan Li. 2025. ClueCart: Supporting Game Story Interpretation  
1474 and Narrative Inference from Fragmented Clues. In *Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI '25)*.  
1475 Association for Computing Machinery, New York, NY, USA, Article 410, 26 pages. <https://doi.org/10.1145/3706598.3713381>

1476 [81] Yi Wang, Jieliang Luo, Adam Gaier, Evan Atherton, and Hilmar Koch. 2024. PlotMap: Automated Layout Design for Building Game Worlds. In *2024  
1477 IEEE Conference on Games (CoG)*. 1–8. <https://doi.org/10.1109/CoG60054.2024.10645627>

1478 [82] Zhecheng Wang, Jiaju Ma, Eitan Grinspun, Bryan Wang, and Tovi Grossman. 2025. Script2Screen: Supporting Dialogue Scriptwriting with Interactive  
1479 Audiovisual Generation. *arXiv preprint arXiv:2504.14776* (2025).

1480 [83] Haijun Xia, Sebastian Herscher, Ken Perlin, and Daniel Wigdor. 2018. Spacetime: Enabling Fluid Individual and Collaborative Editing in Virtual  
1481 Reality. In *Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology* (Berlin, Germany) (UIST '18). Association for  
1482 Computing Machinery, New York, NY, USA, 853–866. <https://doi.org/10.1145/3242587.3242597>

1483 [84] Yuxin Xu, Mengqiu Cheng, and Anastasia Kuzminykh. 2024. What Makes It Mine? Exploring Psychological Ownership over Human-AI Co-Creations.  
1484 In *Proceedings of the 50th Graphics Interface Conference* (Halifax, NS, Canada) (GI '24). Association for Computing Machinery, New York, NY, USA,  
1485 Article 35, 8 pages. <https://doi.org/10.1145/3670947.3670974>

1486 [85] Zihan Yan, Chunxi Yang, Qihao Liang, and Xiang 'Anthony' Chen. 2023. XCreation: A Graph-based Crossmodal Generative Creativity Support  
1487 Tool. In *Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology* (San Francisco, CA, USA) (UIST '23). Association  
1488 for Computing Machinery, New York, NY, USA, Article 48, 15 pages. <https://doi.org/10.1145/3586183.3606826>

1489 [86] Ryan Yen, Jian Zhao, and Daniel Vogel. 2025. Code Shaping: Iterative Code Editing with Free-form AI-Interpreted Sketching. In *Proceedings of the  
1490 2025 CHI Conference on Human Factors in Computing Systems (CHI '25)*. Association for Computing Machinery, New York, NY, USA, Article 872,  
1491 17 pages. <https://doi.org/10.1145/3706598.3713822>

1492 [87] Ryan Yen, Jiawen Stefanie Zhu, Sangho Suh, Haijun Xia, and Jian Zhao. 2024. CoLadder: Manipulating Code Generation via Multi-Level Blocks. ,  
1493 Article 11 (2024), 20 pages. <https://doi.org/10.1145/3654777.3676357>

1494 [88] Zixin Zhao, Damien Masson, Young-Ho Kim, Gerald Penn, and Fanny Chevalier. 2025. Making the Write Connections: Linking Writing Support  
1495 Tools with Writer Needs. In *Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI '25)*. Association for Computing  
1496 Machinery, New York, NY, USA, Article 1216, 21 pages. <https://doi.org/10.1145/3706598.3713161>

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

## 1509 **A Appendix**

### 1510 **A.1 User Behavior in the WoZ co-design study**

1513 Table 2: Results of user strategies for manipulating multimodal elements in the WoZ co-design study.

| 1514 <b>Stage</b>                                            | 1515 <b>Observed behavior</b>              | 1516 <b>User need / Insight</b>                                                                      | 1517 <b>N</b> | 1518 <b>Interaction</b> | 1519 <b>Example</b> |
|--------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------|---------------|-------------------------|---------------------|
| 1517 <b>Inputting (with</b><br>1518 <b>Multi modalities)</b> | 1518 <b>Text</b>                           | 1519 Generated prose should match the established world while allowing the injection of new elements | 83            |                         |                     |
| 1520 <b>Inputting (with</b><br>1521 <b>Multi modalities)</b> | 1521 <b>Image</b>                          | 1522 Needs to inherit style/texture from references                                                  | 5             |                         |                     |
| 1523 <b>Inputting (with</b><br>1524 <b>Multi modalities)</b> | 1524 <b>Sketches</b>                       | 1525 Make spatial relations/composition concrete                                                     | 8             |                         |                     |
| 1526 <b>Planning</b>                                         | 1527 <b>LLM-Generated images</b>           | 1528 Precisely locate inspiration from images                                                        | 90            |                         |                     |
| 1529 <b>Planning</b>                                         | 1530 <b>LLM-Generated text</b>             | 1531 Filter usable bits from many generations and reuse them                                         | 90            |                         |                     |
| 1532 <b>Planning/Translating</b>                             | 1533 <b>Text notes / annotations</b>       | 1534 Externalize temporary ideas for re-generation or final writing                                  | 30            |                         |                     |
| 1535 <b>Planning/Translating</b>                             | 1536 <b>Collage elements</b>               | 1537 Recompose fragments from cross-image to form new scenes                                         | 12            |                         |                     |
| 1538 <b>Planning/Translating</b>                             | 1539 <b>Link elements</b>                  | 1540 Structure relationships between character/scene/object to connect the plot                      | 40            |                         |                     |
| 1542 <b>Translating</b>                                      | 1543 <b>Reconfigure elements in canvas</b> | 1544 Reorder scattered ideas by role/time/space into place for global understanding                  | 4             |                         |                     |
| 1546 <b>Translating</b>                                      | 1547 <b>Text (integration)</b>             | 1548 Consolidate AI-generated text and image-inspired content into the draft                         | 10            |                         |                     |

## A.2 Behavioral interaction data gathered from participants in the user study

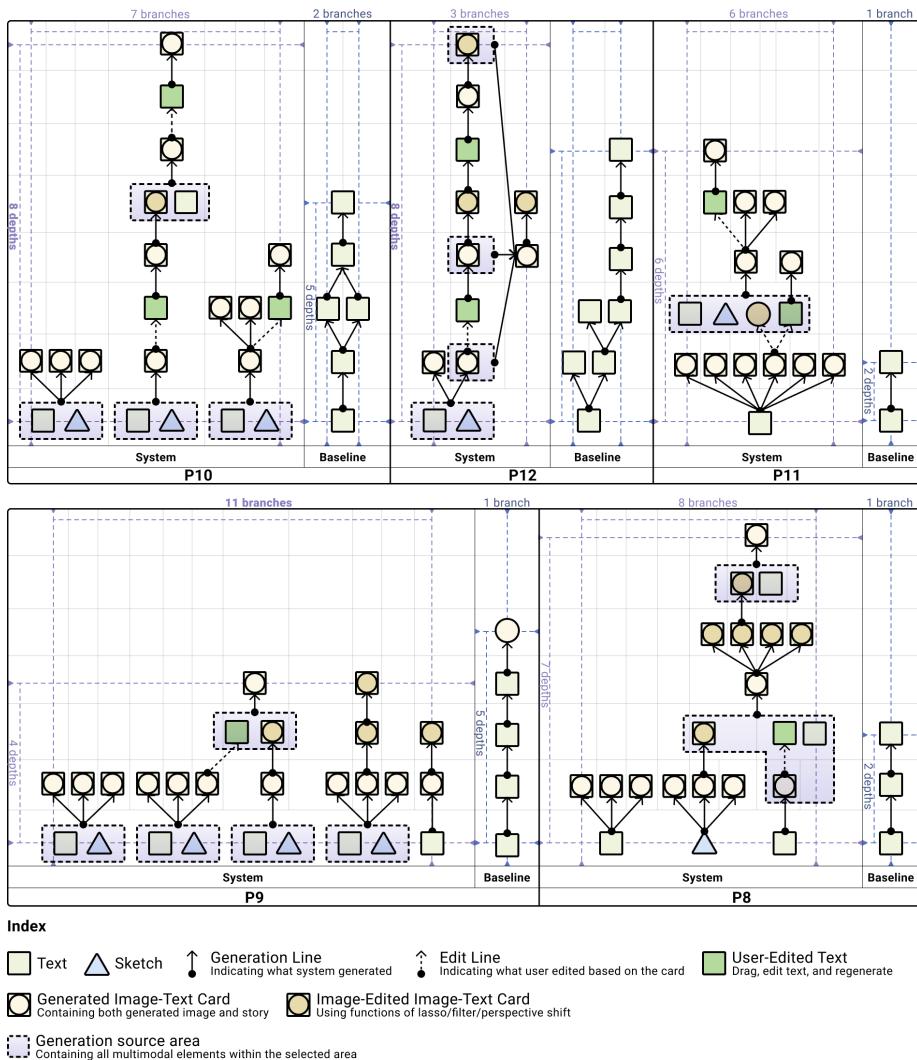
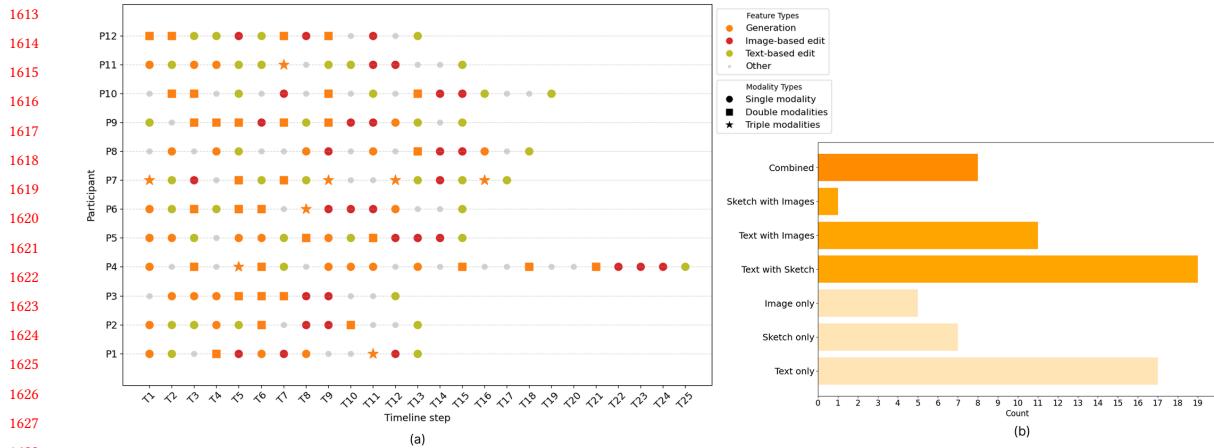




Fig. 11. Behavioral diagram contrasting Vistoria vs. baseline: participants cycle through multimodal generation, collage/recombination, and coupled image–text editing before collecting highlights for integration. Data from P8–P12 show that, compared with baseline, participants using Vistoria explored more directions, with greater divergence (Branches) within each direction. Participants also tended to pursue deeper exploration within specific directions when using Vistoria.



1613  
1614  
1615  
1616  
1617  
1618  
1619  
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1660  
1661  
1662  
1663  
1664

Fig. 12. Interaction records of all participants. The creative workflow begins with multimodal generation—primarily text, complemented by sketches or images to express intentions, followed by refinement and iteration using visual instruments, during which textual descriptions are continuously revised in parallel. Definition of specific behaviors: Generation includes multimodal creation of new cards using Creative Spark, Exact Craft, or Collage; image-based editing refers to operations such as Lasso, perspective shift, and filters; text-based editing covers modifications of generated story segments on the canvas as well as edits made in the text editor; other operations include updates through highlight, cluster, and upgrading global settings.

We examined the sequences of function use and compared exploration patterns across the baseline and our condition. To characterize participants' divergent–convergent behaviors during the creative process, for each task, we reconstructed exploration structures by defining Directions as top-level trajectories toward a goal, Branches as the diversity of possibilities generated within a direction, and Depth as the mean number of iterative steps within each branch to compare the exploration across the baseline and our condition.

|                      | Vistoria        | Baseline        |
|----------------------|-----------------|-----------------|
| Mean # of directions | $6.92 \pm 2.81$ | $1.42 \pm 1.08$ |
| Mean # of branches   | $3.00 \pm 1.35$ | $1.92 \pm 0.67$ |
| Mean depth           | $1.70 \pm 1.18$ | $2.00 \pm 1.22$ |

Table 3. Descriptive statistics (mean  $\pm$  SD) for Vistoria vs. Baseline. When using Vistoria, participants exhibited broader exploration; at the same time, as shown in Figure 12, they also tended to pursue individual directions with greater depth. Specifically, Directions denote the number of distinct aspects or dimensions explored when co-creation with Vistoria or baseline. Branches represent the diversity of possibilities generated within a given direction. Depth indicates the mean number of iterative steps within each branch.

### 1665 A.3 Writing Topics Used in the User Study

1666 The two writing topic prompts used in the user study were:

1668 Topic 1—*Claire steps outside her apartment and finds a small wooden box on her doorstep. The box is secured with an old brass clasp and feels unexpectedly heavy when she lifts it. Its surface is scratched, as if it has been handled many times, and faint traces of dried sea salt cling to the edges.*

1671 Topic 2—*During her morning jog through the park, Maya discovers an ornate iron gate hidden behind overgrown ivy. Through the bars, she can see a path lined with luminescent flowers that pulse gently like soft heartbeats. The air carries faint whispers in a language that sounds hauntingly familiar, almost like someone calling her name.*

### 1676 A.4 Filters

1677 The following are the types of filter supported by the *filter* instrument, showing how different types of filters are applied 1678 to image styles and mapped to text tone or emotion.

| 1681 Filter            | 1682 Image Effect                                                                                                        | 1683 Text Effect                                         |
|------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 1684 <b>Warm</b>       | 1685 Warm tones (gold, amber, red, orange, yellow), high exposure, strong contrast → evoke happiness, comfort, nostalgia | 1686 emphasize positivity, vitality, intimacy            |
| 1687 <b>Calm</b>       | 1688 Cool tones (blue, green, purple) with balanced or lower saturation → convey calmness, wisdom, introspection         | 1689 Reflects contemplative and stable moods             |
| 1690 <b>Dramatic</b>   | 1691 Deep blacks, sharp whites, directional lighting → create intensity, mystery, urgency                                | 1692 Heightens stakes and emotional tension              |
| 1693 <b>Dreamy</b>     | 1694 Soft tones, lowered contrast, diffuse focus → suggest melancholy, intimacy, ethereality                             | 1695 Supports subtle, nostalgic, introspective narration |
| 1696 <b>Monochrome</b> | 1697 Removal of color, emphasis on light, shadow, texture → evoke nostalgia, timelessness, artistry                      | 1698 Adopts reflective and universal tone                |

1699 Table 4. Filter types with corresponding image and text effects.

## 1717 A.5 LLM Prompts

1718  
 1719 You are a visual story developer who analyzes screenshots to decode user visualization intent and  
 1720 creates detailed story segments that bring their creative vision to life.  
 1721  
 1722 Process: 1) Examine the screenshot to understand what specific story content the user wants generated  
 1723 by identifying: printed text(`{text}`) which is the primary indicator of what the user wants you to  
 1724 generate, handwritten text expressing the user's desired content direction and story focus where  
 1725 generation should address gaps and missing details, any images or illustrations with reference  
 1726 text `{previous_text}` for additional context, and hand-drawn sketches representing scenes from the  
 1727 user's imagination.  
 1728  
 1729 Synthesize these elements to understand the user's envisioned story.  
 1730 The generated story should mainly focus on filling in content not covered in (`{text}`) instead of  
 1731 still remain unknown.  
 1732 2) If hand-drawn illustrations exist in the screenshot, return the information about the story scene  
 1733 conveyed in the illustration's layout; if none exist, output 'none'.  
 1734  
 1735 3) Generate Focused Story Content: Using the existing written passages `{full_text}` only as background  
 1736 context to ensure logical consistency, create a NEW detailed story segment that elaborates on a  
 1737 specific scene or moment the user wants to visualize, focuses primarily on the intent expressed  
 1738 in the screenshot rather than expanding the existing text, contains concrete details, character  
 1739 emotions, environmental descriptions, dialogue, and interactions, maintains consistency with the  
 1740 global theme `{global_theme}`, and can reference previous text `{previous_text}` if relevant to the  
 1741 visualization goal.  
 1742  
 1743 4) The narrative should contain substantial plot or setting content, not just descriptive language.  
 1744 The generated story should introducing new, insightful elements based on the context and  
 1745 provide new direction of the story development that can reificate the story.  
 1746 The generated stories need to be imaginative with concrete content, not filled with uncertainties.  
 1747 Respond in JSON format:  
 1748  
 1749 {  
 1750 "story": "A detailed paragraph of no larger than 100 words that creates NEW story content focused on  
 1751 the user's screenshot intent, elaborating a specific scene with concrete details while  
 1752 maintaining logical consistency with the background context.",  
 1753 "intention": "The visualization intention read from the screenshot for story generation direction",  
 1754 "sketch\_information": "Regarding line sketches, integrate them with story descriptions to capture the  
 1755 user's envisioned layout and scene details communicated through hand-drawn imagery, directing the image  
 1756 generator to produce story scenes based on this layout guidance. Avoid generating stories  
 1757 that may trigger content moderation."  
 1758 }.  
 1759  
 1760 Provide only the JSON response without markdown formatting or additional commentary.  
 1761 Let's think step by step.  
 1762  
 1763  
 1764  
 1765  
 1766  
 1767  
 1768

**A.6 Codebook****Theme 1: Instrumental Interaction****instrumental operations**

- ↳ granularity control (using Lasso for detail extraction)
- ↳ multimodal recombination (using Collage)
- ↳ affective alignment (using Filters for tone)
- ↳ perspective shift (viewpoint transformation)
- ↳ open new narrative direction

**Theme 2: Cognitive Process****externalization & traceability**

- ↳ visual history / story evolution
- ↳ spatial organization (grouping)
- ↳ visual checkpoints

**cognitive offloading**

- ↳ offloading working memory

**higher mental demand**

- ↳ not familiar with operations
- ↳ substantial learning effort

**Theme 3: Creative Support through Multimodality****bottom-up workflow**

- ↳ open-ended exploration
- ↳ branching storylines
- ↳ comparing modalities
- ↳ divergent exploration

**inspiration**

- ↳ serendipitous discovery (randomness as value)
- ↳ perspective transformation
- ↳ memory triggers

**visual-text interaction**

- ↳ more vivid detailed description
- ↳ sense of immersion

**Theme 4: Ownership and Agency****control & ownership**

- ↳ resisting AI takeover
- ↳ active curation
- ↳ personal style alignment

**metaphors of use**

- ↳ companion / sketchbook metaphor
- ↳ co-pilot
- ↳ free-exploration

Fig. 13. The final coding tree. Main themes are marked in bold; sub-codes represent specific strategies and behaviors observed in the study.