

1 **Hakka Kitchen: Immersive Game-based Representation of Culinary Cultural**
2 **Heritage**
3

4 **ANONYMOUS AUTHOR(S)**
5
6
7

23
24 Fig. 1. Hakka Kitchen showing a learner in a VR kitchen guided by a Hakka chef to prepare stuffed bitter melon; highlights the
25 paper's focus on embodied, procedural representation and its superior engagement over non-interactive VR video.

26 Intangible Cultural Heritage (ICH) experiences are difficult to share with the public because they are essentially processes that rely on
27 physical interactions in a specific cultural context. We consume noninteractive media such as videos and books to learn about culinary
28 ICH experiences, but they do not allow us to grasp the actual interactive procedures that embody the cultural knowledge. In order to
29 engage people in a traditional cooking experience, we created a VR game where players are guided by a Hakka chef through a modeled
30 physical process of making the traditional dish of stuffed bitter melon. Compared against watching a video in VR providing the same
31 information noninteractively, our game led to increased sensory engagement with the culinary cultural heritage and willingness
32 to transmit awareness for the ICH (N=40). Our work shows how representing interactive procedures instead of static content may
33 empower cultural awareness.
34
35

36 CCS Concepts: • Human-centered computing → Empirical studies in collaborative and social computing.
37

38 Additional Key Words and Phrases: Edutainment design, Virtual reality, HCI, Intangible Cultural Heritage
39

40 **ACM Reference Format:**

41 Anonymous Author(s). 2018. Hakka Kitchen: Immersive Game-based Representation of Culinary Cultural Heritage. In *Proceedings of*
42 *Make sure to enter the correct conference title from your rights confirmation email (Conference acronym 'XX)*. ACM, New York, NY, USA,
43 28 pages. <https://doi.org/XXXXXX.XXXXXXXX>

44
45 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
46 made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
47 of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
48 servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

49 © 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

50 Manuscript submitted to ACM

51
52 Manuscript submitted to ACM

53 1 Introduction

54 Intangible cultural heritage (ICH) encompasses traditions or living expressions inherited from our ancestors and
 55 transmitted to descendants, including oral traditions, performing arts, social practices, and traditional craftsmanship[75].
 56 It constitutes cultural identity, preserving millennia of communal memory, ancestral wisdom, and sociopolitical
 57 relationships that link societies over time[80, 82]. ICH is vital to maintain strong and diverse cultures in a rapidly changing
 58 world [3]. However, for process-based culinary ICH, theoretical knowledge alone is insufficient to ensure their vitality
 59 [84]. The core of this heritage lies in the embodied process of hands-on practice, where tacit knowledge and refined
 60 skills must be transmitted and comprehended through direct experiential engagement. Consequently, safeguarding this
 61 specific form of ICH necessitates approaches that facilitate active participation and firsthand experience[68].
 62

63 Current mainstream methods for documenting and transmitting culinary ICH predominantly rely on non-interactive
 64 media, including documentary films, short videos, and recipe books [4, 70, 76, 83]. While valuable as information carriers,
 65 the passive nature inherent in non-interactive media fundamentally constrains their capacity to effectively communicate
 66 the multisensory experiences (e.g., olfactory, tactile, auditory dimensions) essential to cooking practices[17, 32, 67, 71],
 67 the nuanced operational knobs embedded within specific techniques, and the dynamic cultural contexts underpinning
 68 these traditions[16, 58].

69 Meanwhile, digital games, characterized by high interactivity and immersion, have significant potential for engaging
 70 users and simulating complex procedural systems[5, 12, 21, 37]. Specifically, their capacity to facilitate embodied
 71 simulation through kinesthetic and multisensory feedback aligns with the cognitive mechanisms through which culinary
 72 expertise is developed. However, existing applications in the culinary domain largely prioritize entertainment value[23,
 73 63], often oversimplifying processes and cultural depth. Their potential for effectively preserving and transmitting
 74 the intricate, knowledge-intensive nature of process-based culinary ICH remains significantly underexplored and
 75 underutilized. This gap highlights a critical need for dedicated research to utilize interactive digital media, specifically
 76 designed games, for the effective education and transmission of culinary ICH.

77 To bridge this gap and explore this potential, we developed "**Hakka Kitchen**", an immersive VR game, using
 78 the Hakka culinary heritage as a specific case study. It moves beyond passive consumption by enabling players to
 79 actively engage with Hakka culinary heritage within a virtual hands-on environment. Players interact with authentic
 80 ingredients, learn traditional techniques through step-by-step guidance, explore relevant cultural narratives, and
 81 virtually prepare Hakka dishes. The core design of the game focuses on simulating critical sensory cues (e.g., visual
 82 changes, sound feedback), replicating precise motor skills, and embedding contextual cultural knowledge within the
 83 procedural gameplay. This study has a dual purpose: (1) to present the design of this VR game as an intervention for
 84 culinary ICH transmission, and (2) to empirically assess its impact. Specifically, we investigate the following research
 85 questions:

86 RQ1: How can we represent culinary ICH using interactive game mechanics?

87 RQ2: How do players interact with elements in the game in engaging with culinary ICH content?

88 RQ3: What is the effect of the game experience on players interest, knowledge, and awareness of culinary ICH?

89 Our contributions are: (1) We contribute an embodied representation of culinary ICH that couples a chef-elicited
 90 procedural dictionary with physics-based manipulation, natural hand interactions, and multisensory feedback to encode
 91 tacit, process-based know-how *in situ*. Cultural narration is interleaved with step execution so meanings surface
 92 at the moment of action; guidance is step-synchronous via lightweight instructions, optional hints, and immediate
 93 feedback to support exploration and error-recovery. (2) We contribute a player–environment interaction model for
 94

105 ICH learning that blends diegetic scaffolds (glowing affordances, audio mentorship) with an apprentice framing to
106 sustain immersion and motivate practice. The design emphasizes recoverable errors, friendly undo, and real-kitchen
107 semantics so players can iterate safely while maintaining ecological validity; optional hints and timed reminders adapt
108 support to behavior in the moment. (3) We contribute an empirical comparison of an interactive VR cooking game with
109 a matched VR video, examining interest, procedural knowledge, and cultural-heritage awareness, and qualitatively
110 tracing how enactment, pacing control, and recoverable mistakes shape engagement and perceived transfer, yielding
111 concrete design implications for ICH technologies.
112
113

114 2 Background

115 2.1 Intangible Cultural Heritage

116 Intangible cultural heritage (ICH) encompasses “the practices, representations, expressions, knowledge, and skills”
117 that communities recognize as part of their cultural legacy. Unlike physical artefacts, these traditions are embodied,
118 socially transmitted, and highly vulnerable to erosion under globalization and demographic change [28]. Culinary ICH
119 exemplifies this complexity, requiring the transmission of not only what is done but how and why it is done, which is
120 difficult to store in purely textual or audiovisual media [40].

121 Diverse modalities contribute to safeguarding process-rich ICH. Early digitization prioritized object-centric media
122 (scans, photos, videos), neglecting procedural and affective layers [81]. Community-based inventorying formalizes
123 participatory documentation, positioning practitioners as co-authors and improving authenticity and uptake [74].
124 Social live-streaming and short-video platforms (e.g., TikTok/Douyin) have emerged as large-scale dissemination
125 channels for ICH performance and practice, associated with increased public engagement and cross-cultural awareness
126 [53, 77]. Interactive web documentaries and mobile storytelling scaffold non-linear sense-making around heritage,
127 complementing archives with context and affect [56]. While recent scholarship proposes data-centric resources such as
128 Recipe1M+ (recipes–images) [44], FoodKG (semantics-driven graph)[24] as richer data infrastructures to model culinary
129 knowledge as linked, computable structures for retrieval, substitution, and pedagogy, ontology-driven extraction of
130 subject–predicate–object triples from heritage texts to build linked data graphs [72], GIS-powered mappings that fuse
131 tangible and intangible layers of urban history [29], and motion-capture pipelines that visualize folk dances to safeguard
132 choreographic knowledge [81], they remain limited in conveying embodied, sensorimotor-dependent practices. These
133 multi-modal forms expand reach, searchability, and community control, yet they rarely enact the closed sensorimotor
134 loops needed for learning tacit, stepwise skills.

135 Virtual- and augmented-reality have become central to communicating embodied skills. Controlled studies report
136 that VR cultural-heritage applications increase retention, concentration, and learner motivation compared with non-
137 immersive media [42]. In tourism contexts, AR overlays situational narratives onto real sites, eliciting higher emotional
138 engagement and perceived authenticity [69]. Design research has also explored panoramic VR maps that document craft
139 techniques at scale [19] and 360° video tours that heighten immersion for remote audiences [65]. Nevertheless, most
140 empirical work still targets visual-spatial heritage (architecture, performance), leaving process-rich culinary practices
141 under-examined. Game-based learning provides an established paradigm for situated cognition in heritage contexts.
142 The SandBox Serious Game model situates micro-tasks within realistic 3-D worlds to foster exploratory learning [2].
143 Subsequent work has extended this logic to AR treasure-hunts in historic villages [6] and VR titles whose continuance
144 intention is driven by immersion and cultural relevance [57]. Yet comparative reviews note that the majority of ICH
145 games focus on visual spectacles rather than intricate, step-wise skills such as traditional food preparation [59].
146
147

157 Previous works demonstrate a trajectory from static digitization toward immersive, interactive, and AI-mediated
158 experiences that better embody the “live” qualities of ICH. Early culinary deployments and AR cooking assistants report
159 viable task performance and learner satisfaction while avoiding safety/cost constraints of real kitchens [49]. Moreover,
160 augmenting VR with olfactory and haptic/thermal feedback increases presence and decision fidelity, strengthening
161 preconditions for skill transfer [46, 54]. However, complex culinary traditions—where tacit know-how, multi-sensory
162 cues and sociocultural meanings intertwine—remain sparsely represented across these modalities. For culinary ICH
163 specifically, VR is compelling because it can (i) simulate kitchen contexts safely and repeatably; (ii) couple user
164 actions with multisensory cues (appearance, timing, and sound) that underpin judgment in cooking; and (iii) embed
165 narrative, feedback, and progression typical of serious games to externalize tacit techniques as assessable interactions.
166 Evidence from adjacent domains indicates VR training can improve motivation, presence, and psychomotor performance
167 versus video/desktop baselines [8]. *Lost Recipes* is a commercial VR game that invites players to cook historical dishes
168 from cultures such as Mayan, Chinese, and Greek [52]. Although it explicitly positions itself at the intersection of
169 education and entertainment, no systematic evaluation of its cultural or procedural learning outcomes has been reported.
170 This highlights both the promise of VR for culinary ICH and the need for empirically grounded, expert-informed
171 approaches—an agenda our work seeks to advance.
172

173 2.2 Embodied Cognition

174 The effective transmission of culinary ICH is fundamentally based on the theory of embodied cognition [66]. This
175 posits that human cognition, which encompasses perception, learning, memory, and skill acquisition, occurs not solely
176 through abstract symbol manipulation within the brain, but emerges dynamically from the ongoing sensorimotor
177 interaction between an individual’s physical body and its surroundings [18, 78]. In culinary practice, the dynamic
178 interaction is fundamental to how tacit knowledge and refined skills inherent in culinary heritage are formed and
179 transmitted [1, 34].

180 However, current mainstream methods for documenting and transmitting culinary ICH, such as videos, books, and
181 other non-interactive media, face inherent limitations in capturing its embodied, situated, and sensorimotor-dependent
182 nature. These disembodied and passive approaches, while capable of visually depicting or describing actions, intrinsically
183 fail to provide learners with a full situational context extending beyond visual representations. Consequently, this
184 disembodiment creates a significant barrier to effectively transmitting the nuanced, tacit, and sensorimotor-dependent
185 core knowledge and skills characteristic of a process-based culinary heritage such as Hakka cuisine.

186 VR addresses this gap by enabling embodied simulation. Through head/hand tracking, VR immerses users in simulated
187 culinary environments, fostering spatial presence. Users virtually manipulate tools/ingredients; linking actions to
188 visual/auditory cues provides critical kinesthetic feedback. Crucially, VR creates dynamic sensorimotor loops: actions
189 (e.g., stirring) trigger sensory consequences (visual/sound/vibration changes), requiring user response to approximate
190 real-world feedback mechanisms for skill acquisition. Applications such as *Digital Diabolo* [35] and *ShadowPlayVR* [25]
191 demonstrate VR’s capacity to externalize tacit cultural techniques through embodied interaction, offering precedents
192 for how similar principles can be applied to culinary ICH.

193 2.3 Educational Awareness for ICH safeguarding

194 Given the valuable role of education in safeguarding ICH, the UNESCO 2003 Convention for the Safeguarding of
195 Intangible Heritage explicitly recognizes the transmission of ICH “through formal and non-formal education” as a core
196 safeguarding measure[27]. This institutional recognition underscores the imperative to promote educational awareness

209 in safeguarding ICH[9, 10, 15], ensuring that people not only acquire knowledge but also develop a deeper understanding
210 and appreciation, which is essential for ICH continuity.
211

212 The pursuit of educational awareness faces heightened challenges for process-based ICH, exemplified by culinary
213 traditions. These heritage forms depend intrinsically on embodied skills and tacit knowledge[43], making them difficult
214 to teach through conventional methods. Traditional documentary methods including films, videos, and recipe books
215 play a crucial role in archiving static information[41] such as ingredient lists, basic steps, and cultural narratives. Yet
216 their inherently non-participatory and observational nature[11, 55] imposes fundamental constraints. They cannot
217 effectively support hands-on practice, sensory engagement, or experiential learning[1]. For example, watching videos or
218 reading instructions may convey factual knowledge, but they cannot provide the complete sensory experience[73], such
219 as the tactile, olfactory, and motor coordination that comes only through hands-on practice[51, 64]. Similarly, passive
220 learning fails to impart appreciation for nuanced skills, such as the subtle control of timing, pressure, or ingredient
221 handling that defines authentic cultural tradition. While these media formats remain valuable for archival purposes,
222 they ultimately cannot create the profound, practice-based understanding needed for effective safeguarding through
223 education.
224

225 To overcome these limitations, recent studies have explored interactive digital technologies as a means to foster
226 deeper educational awareness in ICH safeguarding[20, 61]. VR cooking games, in particular, offer a promising avenue
227 for simulating culinary ICH. However, prevailing applications remain predominantly entertainment-focused[33, 50],
228 prioritizing gameplay mechanics[62] and recreational enjoyment, or designed for medical rehabilitation purposes[39]
229 such as motor skill recovery[22] and cognitive therapy[36, 79]. Crucially, neither orientation addresses the dual core
230 imperatives of culinary ICH transmission: the effective conveyance of embodied skills (e.g., wok-tossing techniques,
231 fire modulation) and the preservation of sociocultural meanings interwoven with food preparation rituals.
232

233 Thus, a critical preservation gap persists: UNESCO’s educational mandate remains unrealized due to the passive
234 constraints of traditional media—which preclude embodied practice for process-based ICH like Hakka cuisine—and the
235 misaligned objectives of existing VR tools—which subordinate cultural education to entertainment or therapeutic
236 goals. This dual inadequacy leaves the procedural, sensory, and cultural dimensions of culinary heritage transmission
237 fundamentally unaddressed. To bridge this gap, our research leverages Hakka cuisine as a paradigmatic case, developing
238 a VR game explicitly designed to encode procedural knowledge through embodied simulation while embedding
239 socio-cultural narratives.
240

241 3 Game Design

242 3.1 Game Overview

243 *Hakka Kitchen* is an immersive VR cooking game designed to preserve and transmit intangible cultural heritage (ICH)
244 through embodied, interactive learning. The game centers on the preparation of stuffed bitter melon—a representative
245 Hakka dish—and situates players as apprentices within a virtual kitchen environment.
246

247 The gameplay is structured around a five-stage cooking sequence: (1) mixing minced pork with seasonings, (2) slicing
248 bitter melon rings, removing pith, and blanching, (3) stuffing melon rings with meat mixture, (4) steaming, and (5)
249 preparing the sauce and finishing (See details in Figure 2). Each stage combines procedural practice (e.g., removing the
250 pith, managing stuffing quantity) with cultural storytelling (via Chef Lin), embedding tacit culinary knowledge within
251 the flow of action. Players actively perform each stage of the cooking process using natural hand interactions with
252 virtual tools and ingredients to experience embodied learning.
253

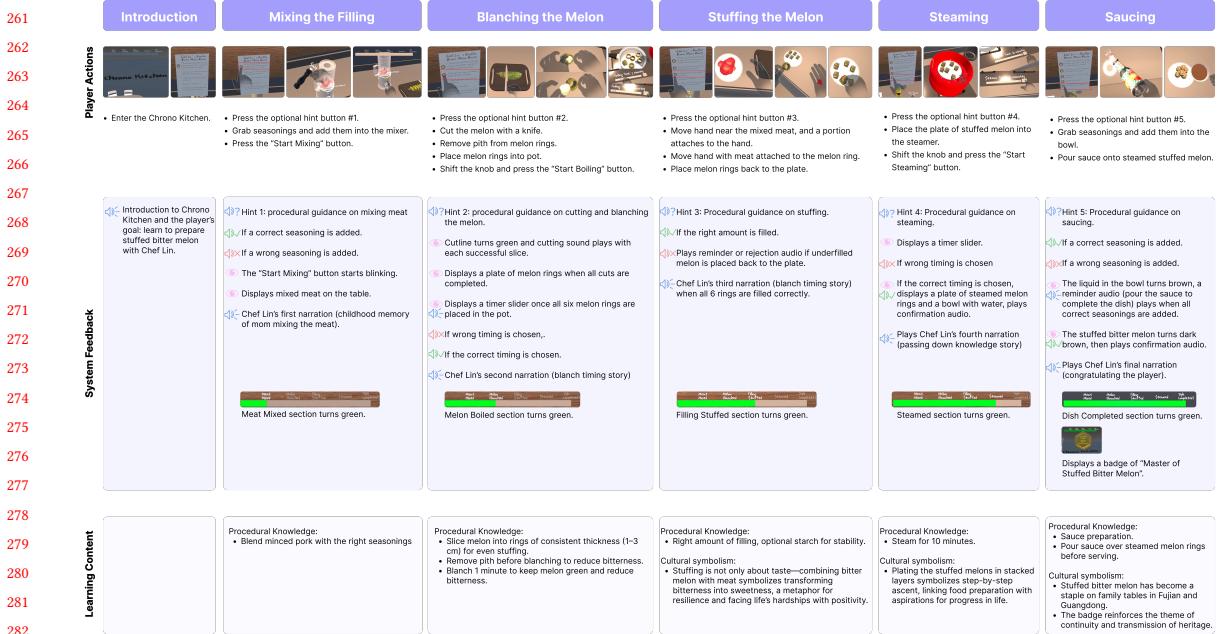
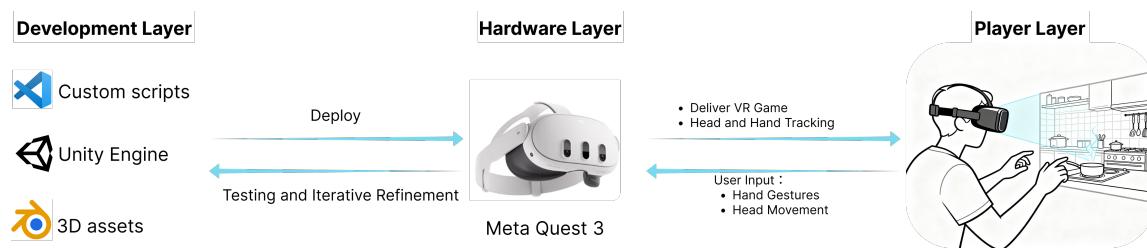


Fig. 2. Game Flow. Players progress through stages of introduction, mixing, blanching, stuffing, steaming, and saucing. Each stage aligns player actions, system feedback, and learning content, illustrating how procedural steps, feedback, and cultural narratives are integrated across the experience.

3.2 Formative Interview and Design


To ensure the scientific rigor and feasibility of the intervention, this study collected formative data through semi-structured expert interviews prior to formal implementation. Three chefs with over 10 years of experience in Hakka cuisine were recruited as interviewees. The interview guide revolved around four themes: i) Historical context of stuffed bitter melon; ii) Pre-cooking ingredient preparation techniques; iii) Standardized cooking procedures; and iv) Cultural symbolism, comprising 13 questions focused on embodied cooking techniques, sensory markers for doneness, and cultural narrative frameworks. Audio recordings of the interviews were transcribed verbatim and analyzed via thematic coding by two researchers, yielding a procedural dictionary structured as "action verb + utensil + ingredient + cultural annotation" to inform both the interactive logic and video storyboarding of the VR game. Cultural implications, as described by experts, were implemented as hidden narrative to be unlocked when each stage of preparing the dish is completed.

Formative data analysis underscored the need to address common pitfalls in preparing stuffed bitter melon, which we emphasized in our game design. In the slicing and blanching stages, experts highlighted the importance of maintaining consistent thickness ("not too thin, not too thick"), leading us to embed the desirable range of 1-3 cm into the hint system. They also highlighted that removing the pith prior to blanching is essential to reduce bitterness. To reflect this, if players attempt to blanch melon rings without first removing the pith, a reminder audio is triggered to draw attention to this critical step. Additionally, experts stressed the importance of blanching time ("no more than one minute"), which inspired the implementation of a timer slider requiring players to experiment with different durations.

313 Finally, during the stuffing stage, insights on “quantity control” were operationalized into physics-based interactions
 314 that mimic real-life stuffing practices, with feedback mechanisms guiding players to recognize the appropriate amount
 315 of filling.

316 Using Unity 6, we developed a VR game integrating embodied interaction with cultural storytelling. Each scene
 317 enables physics-based interactions (e.g., grabbing, cutting, stuffing), provides diegetic guidance through audio cues and
 318 optional hints, delivers cultural narration through Chef Lin.

319 To construct the control condition, we stitched together multiple video segments of the stuffed bitter melon recipe
 320 into a continuous sequence. We selected source material filmed from a chef’s-eye perspective wherever possible. The
 321 composite video was then presented within the VR headset, ensuring participants experienced the task sequence with a
 322 consistent visual angle and pacing. While this method preserved cross-media alignment in viewpoint, it necessarily
 323 differed from the VR game by removing player agency, thereby isolating interactivity as the key contrast.

336 Fig. 3. System architecture. The VR game is developed in Unity and deployed to the Meta Quest 3, with iterative testing feeding
 337 results back into the development environment. On the hardware, Quest 3 delivers the game to the player while capturing head and
 338 hand inputs, which are processed and returned through the system to sustain real-time interaction.

3.3 Game Design

343 *3.3.1 Embodied Learning.* A core design principle of *Hakka Kitchen* is embodied learning: the use of natural, bodily
 344 interaction to transmit tacit culinary knowledge that is otherwise difficult to capture through non-interactive media.
 345 Drawing on theories of embodied cognition, the game leverages tracked hand gestures and physics-based manipulation
 346 of virtual tools and ingredients to approximate the sensorimotor processes central to cooking practice.

347 **Natural hand interactions.** Players employ intuitive gestures to complete every stage of the recipe. They grab
 348 seasonings and pour them into the mixer, tilt sauce bowls to drizzle liquid, slice through bitter melon rings with a knife,
 349 remove the pith by hand, and place the plate of stuffed melons onto the steamer for steaming. These gestures mirror
 350 the embodied micro-actions of real kitchens, creating a sense of presence that reinforces motor memory and procedural
 351 flow.

352 **Multisensory feedback.** To reinforce embodied cognition, the game integrates layered sensory cues that tie each
 353 action to an immediate perceptual response. Visual indicators (e.g., the meat mixture becomes slightly darker after
 354 being mixed with seasonings like soy sauce, the stuffed bitter melon deepening in color after brown sauce is poured)
 355 provide players with concrete markers of doneness and process progression. Auditory cues (e.g., the slice sound when
 356 the knife cuts the melon, the mechanical whir of the mixer) further simulate real-world cooking and how it relies on
 357 sensory feedback to refine their technique. Collectively, these multimodal cues create sensorimotor loops where actions
 358 trigger perceptible consequences, and players must respond accordingly. This enhances the embodied learning of the
 359 cooking process while simultaneously deepening the player’s immersion in the game.

365 Environmental realism. Embodied learning is further situated within a virtual kitchen environment designed to
 366 evoke the affordances of a real cooking space. The virtual kitchen approximates the layout, dimensions, surface textures
 367 of a real-world kitchen, populated with common culinary objects and utensils. Through recreating a familiar kitchen
 368 setting, we anchor abstract cultural narratives in a recognizable environment to reduce cognitive load for the player
 369 while enhancing immersion.

370
371
372 3.3.2 Game Narrative Design. Narrative plays a central role in situating the player within the cultural and pedagogical
 373 framework of Hakka Kitchen. From the very outset, an audio welcomes players to the “Chrono Kitchen” where timeless
 374 skills and flavors are preserved. At this entry point, players are positioned as apprentices of Chef Lin—a virtual mentor
 375 who provides cultural narration and cooking guidance through voiceover. This framing keeps players motivated by
 376 giving them a clear goal of learning to prepare the dish. We also considered an alternative framing in which players
 377 would assume the role of a family member cooking during the Spring Festival under the guidance of their grandmother.
 378 We ultimately rejected this approach, as it risked breaking immersion due to discrepancies with players’ diverse personal
 379 family contexts. The apprentice framing, by contrast, was judged to be more universally relatable and effective in
 380 maintaining immersion.

381
382
383 Chef Lin’s narration unfolds progressively as players complete each of the five procedural stages of cooking stuffed
 384 bitter melon. After mixing the filling, he recalls childhood memories of watching his mother blend minced pork by hand.
 385 Following the blanching step, he shares a personal anecdote about accidentally overcooking the melon the first time he
 386 assisted his mother in preparing the dish. This underscores both the importance of precise timing during blanching and
 387 his personal connection to the dish. Upon stuffing the melon rings, Chef Lin conveys the cultural symbolism he learned
 388 from his own master when he was an apprentice: that the combination of bitter melon and savory meat embodies the
 389 transformation of bitterness into sweetness, a metaphor for resilience and the ability to turn hardship into joy. Once the
 390 steaming is complete, he highlights plating practices he now passes on to his apprentices—stacking the melon pieces
 391 to symbolize step-by-step ascent. Finally, upon completion of the dish, Chef Lin situates stuffed bitter melon in its
 392 contemporary social context as a staple on family tables in Fujian and Guangdong, while congratulating players for
 393 unlocking their first recipe in the “Chrono Kitchen”.

394
395
396 This narrative design serves multiple functions. First, by grounding the story in Chef Lin’s personal experiences and
 397 presenting it in the first-person perspective, we aimed to make the narration more relatable and interesting for players.
 398 Second, the narration embeds both cultural meanings (e.g., the symbolic transformation of bitterness into sweetness)
 399 and procedural knowledge (e.g., the importance of blanching time) in a non-instrumental manner, enabling players
 400 to absorb knowledge and build awareness through context rather than didactic instruction. Finally, the narrative is
 401 structured around a recurring motif of transmission: Chef Lin learning from his mother, from his master, and later
 402 passing knowledge on to his own apprentices. This motif not only mirrors the apprentice role assigned to players but
 403 also resonates with the broader theme of continuity underpinning both Hakka cuisine and intangible cultural heritage
 404 safeguarding. Ultimately, it anchors the “Chrono Kitchen” as a symbolic world of inheritance, where embodied learning
 405 and cultural transmission converge.

406
407
408
409
410
411 3.3.3 Instructions and Hints. Procedural instructions. The game provides procedural instructions that broadly
 412 align with the traditional recipe flow, guiding players through the five stages of preparing stuffed bitter melon. These
 413 instructions indicate what action should be taken next (e.g., mixing the minced pork with seasonings, blanching melon
 414 rings, steaming the stuffed pieces for ten minutes) but deliberately do not prescribe every micro-detail. By doing so,
 415

417 we intentionally leave room for players to explore, experiment, and make small mistakes, reinforcing tacit knowledge
418 acquisition through embodied trial and error.

419 **Optional hints.** To supplement these baseline instructions, we implemented an optional hint system. Hints can be
420 activated once a preceding step is completed, and they provide more detailed guidance. These hints vary in function:
421 some advance the procedure by clarifying the next step (e.g., add seasonings into the blender or the bowl; place the plate
422 of stuffed bitter melon into the steamer), while others embed culturally significant or technically critical knowledge (e.g.,
423 1-3 cm slices; remove pith; do not overfill or underfill; starch can stabilize filling). Although this creates the possibility
424 that certain players may not access all knowledge, we embed such knowledge in hints to frame it as discoverable and to
425 empower players to self-regulate their learning pace and deepen engagement by rewarding curiosity. This balances the
426 fidelity of cultural transmission with the agency of player-driven exploration.

427 **Feedback mechanisms.** The game integrates multiple forms of immediate feedback to reinforce procedural
428 knowledge. Correct and incorrect actions are distinguished through confirmation or rejection audio throughout the
429 game. This helps players immediately recognize mistakes, adjust their behavior, and reinforce accurate techniques.
430 Beyond these binary cues, the game provides targeted reminders to highlight to the players key knowledge identified
431 during chef interviews. For example, if a melon is underfilled or if the pith has not been removed before blanching, an
432 audio is triggered to draw attention to the error.

433 **3.3.4 Error-responsive Design.** To complement the instructions and hints system, we deliberately withheld certain key
434 information to encourage trial-and-error learning. This design draws on Metcalfe’s Error-Based Learning Theory [48],
435 which shows that making errors and then receiving corrective feedback leads to deeper processing and longer-lasting
436 memory than error-free practice. In the blanching stage, players are presented with a timer slider ranging from 1 to
437 10 minutes but are not told the “correct” duration upfront. If they over- or under-blanch the bitter melon, a rejection
438 audio plays and they cannot advance. Only after players select the correct timing does Chef Lin’s narration confirm the
439 optimal blanching time of one minute. This attempts to reinforce procedural knowledge by leveraging mistakes as a
440 learning mechanism, making the correct blanching time more durable in memory than if it were provided upfront. It also
441 reflects how culinary skills are traditionally acquired—through embodied practice, mistakes, and gradual refinement.

442 **3.3.5 Engagement Strategies.** Achievement systems can serve as powerful motivators in serious games [13]. To sustain
443 player motivation and ensure continuity across the cooking sequence, we integrated several engagement strategies that
444 operate at both procedural and cultural levels.

445 **Progress Indicator.** A visual progress bar tracks advancement through the five cooking stages. This scaffold provides
446 players with a clear understanding of the structured, sequential nature of preparing the dish. It signals what they have
447 already accomplished and how each achievement brings them one step closer to the final goal. Players are encouraged
448 to remain engaged and persist through the entire game.

449 **Unlocking Cultural Narratives.** Each completed stage unlocks a new segment of Chef Lin’s narration, embedding
450 cultural knowledge into the flow of gameplay. This incremental reveal of stories serves as a form of reward, enhancing
451 players’ interest in the cooking process while deepening their awareness of the cultural meanings embedded in the dish.

452 **Achievement Badge.** Upon successfully completing all five stages, players earn a “Chrono Kitchen” badge that
453 certifies their accomplishment in mastering the stuffed bitter melon. This motivational closure provides a tangible
454 symbol of recognition and accomplishment, sustaining engagement through to the end of the game.

469 **4 Methods**

470 **4.1 Study Design**

472 We conducted a two-arm, between-subjects experiment comparing an *interactive VR cooking game* to a *non-interactive*
 473 *VR video* control. In the game condition, participants executed the full preparation workflow using 6-DoF tracked
 474 controllers with in-world guidance and optional on-demand hints (e.g., slicing, blanching, stuffing, steaming). In the
 475 control condition, participants passively viewed a first-person capture of the same workflow presented at natural pace.
 476 This arrangement avoids cross-medium carry-over while enabling dish-level comparisons within each medium. To
 477 mitigate order effects, dish order was counterbalanced within each condition using a Latin square. The study process is
 478 shown as Figure [?].

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

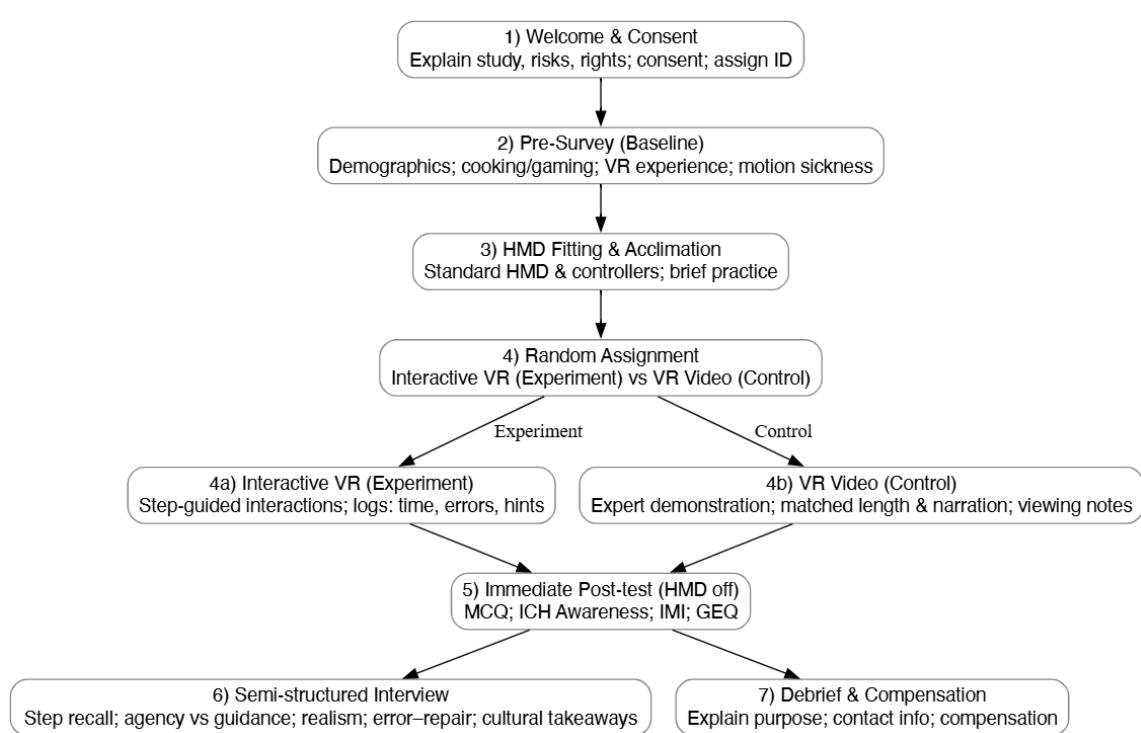


Fig. 4. User Flow.

512 **4.2 Participants**

514 As shown in details in A.1, we recruited adult volunteers (18+ years) from the local community and university mailing
 515 lists. Eligibility required normal or corrected-to-normal vision and no history of severe motion sickness or vestibular
 516 disorders. Prior to the session, participants provided demographics (age, gender identity, highest qualification, cultural
 517 background), weekly gaming hours, and self-reported cooking experience. All participants gave informed consent and
 518 received a small gift card honorarium.

521 4.3 Procedure**522 4.3.1 Session Flow.**

524 (1) **Orientation and consent.** Participants reviewed the information sheet and provided written informed consent.
525 (2) **HMD setup and safety.** The researcher fitted the HMD, verified comfort and interpupillary distance, and
526 explained safety boundaries.
527 (3) **Exposure.** Participants experienced exactly one condition (interactive VR game or matched VR video) in
528 a single sitting. The software logged time-on-task and in-experience events (e.g., hints used, errors) where
529 applicable.
530 (4) **Post-test battery.** Immediately after exposure (HMD removed), participants completed: (i) procedural knowl-
531 edge (MCQ), (ii) ICH awareness (ICH Image Scale), (iii) motivation (IMI short form), and (iv) game experience
532 (GEQ).
533 (5) **Interview.** A 5–10 minute semi-structured interview probed perceived agency and pacing, clarity/learnability
534 of steps, cultural salience, realism, and improvement suggestions.

535 4.3.2 Materials and Measurements. Participants used a room-scale HMD with 6-DoF tracked controllers. Guardian/safety
536 boundaries were configured prior to use.

537 We measure the below:

538 *543 Procedural knowledge instruments.* The MCQ assessed critical parameter knowledge.

544 *545 Engagement & experience.* We administered the Interest Motivation Inventory (IMI) short form immediately post-
546 exposure to assess intrinsic motivation, with subscales targeting interest and perceived competence. The Game Ex-
547 perience (GEQ) capture immersion/flow, competence, positive/negative affect, challenge, and tension, including two
548 dimensions: 1)sensory & Imaginative, 2)positive affect.[30, 47]

549 *550 ICH awareness.* To index awareness, perceived value, and interest in intangible cultural heritage, we used a short
551 form adapted from the ICH Image Scale. This instrument indexes transmission, localization, vitality and association in
552 cultural practices.(See Liu et al. for construct definition and dimensionality.)

553 *554 Qualitative protocol.* A semi-structured interview (5–10 minutes) elicited perceptions of agency, clarity/learnability,
555 cultural salience, and suggested improvements. Interviews were audio-recorded and transcribed.

558 4.4 Analysis

559 We adopted a mixed-methods analytic plan. Alpha was .05 (two-tailed); 95% CIs and effect sizes are reported for all
560 comparisons.

561 **562 Qualitative data.** Interview transcripts were analyzed using reflexive thematic analysis with an initial codebook
563 oriented to agency, clarity/learnability, immersion/affect, and cultural salience. Two coders independently coded a subset,
564 discussed discrepancies to refine the codebook, and then one or more coders completed full coding in line with reflexive
565 TA practice; interrater agreement on the double-coded subset was summarized via Cohen's κ . We then conducted a
566 condition-wise framework comparison to surface convergent/divergent themes and negative cases; representative,
567 anonymized quotes illustrate each theme.

568 **570 Quantitative data.** All quantitative data were analyzed using R. Questionnaire responses were analyzed at the
571 dimension level, treating each construct as composed of multiple sub-dimensions. Since the responses were measured

573 on Likert-type scales and did not meet normality assumptions (Shapiro-Wilk test, $p < 0.05$), non-parametric Wilcoxon
 574 rank-sum tests were used to compare medians between the two independent groups. For the knowledge test items, which
 575 were categorical in nature, group differences in accuracy rates were assessed using chi-square tests of independence.
 576 All statistical tests were two-tailed, with a significance level set at 0.05.
 577

578 5 Results

579 We report quantitative outcomes for the control condition (VR video) and qualitative themes from post-session interviews.
 580 Quantitative instruments included Intrinsic Motivation Inventory (IMI), Game Experience Questionnaire (GEQ), a
 581 multiple-choice knowledge test, and a recipe step-order task. Qualitative codes were developed via reflexive thematic
 582 analysis focused on RQ1 (procedural/process knowledge representation) and RQ3 (interest, knowledge, awareness),
 583 with RQ2 (interaction/navigation) summarized briefly.
 584

585 5.1 Embodied Doing and Recoverable Errors

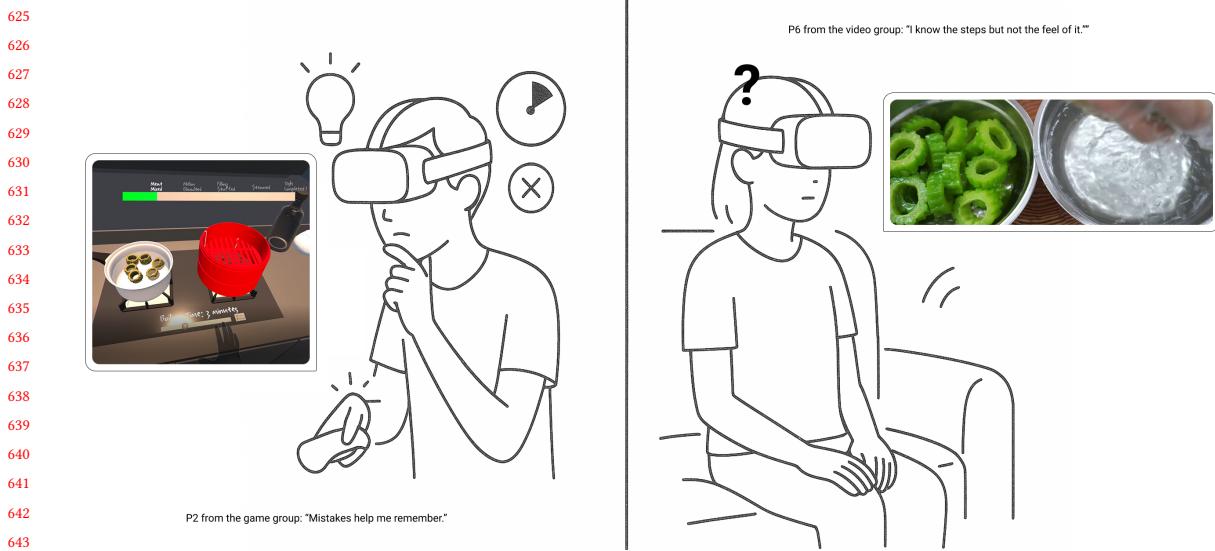
586 5.1.1 *Mistakes Become Memory Anchors.* Participants generally viewed "doing it yourself" as a key path from "knowing"
 587 to "being able to do it." First, the process of error-redo becomes a memory anchor. The VR game group repeatedly
 588 described how the low-cost trial-and-error offered by undo/reset functionality "engraves" micro-operations into their
 589 physical memory. Typical scenarios included overstuffing, resulting in loose filling, rearranging a plate after tipping it
 590 over, and repeated practice after misjudging the timing of blanching. As P2 in the game group reported, "Mistakes help
 591 me remember." P10 in the control group stated that they would learn better through a more interactive mode that "After
 592 making a mistake once, I know how to adjust". And P7 from the game group stated that "spilled the plate all over the
 593 floor...after starting over, I remember the rimming gesture", illustrating "making mistakes is learning" process.
 594

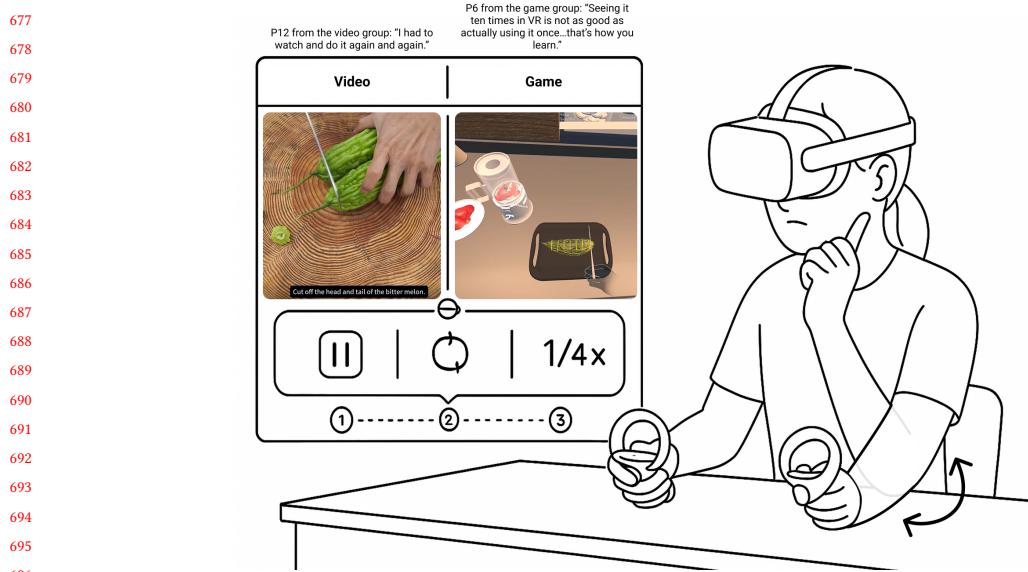
595 Beyond the interactive learning process enabled by the game, participants suggested adding specific parameters by
 596 increasing "interval + outcome cues" would help them to better remember the ICH recipe. Interactive manipulation
 597 facilitates the consolidation of key parameters like slice width, packing tightness, and heating time. However, participants
 598 such as P10 from the video group and P2 from the game group consistently requested numerical ranges (e.g., 10–15 mm
 599 for the width of bitter melon to be cut, or 45–70 s for how long to cook) and outcome cues (color, resistance, and contour)
 600 at key points to reduce uncertainty. Hints like "cutting 10–15 mm" or "slightly springy when picked up" would provide
 601 more stability. The control group was relatively more likely to complain about the ambiguity of "appropriate/small
 602 amount." It's worth noting that a few novices in the kitchen, such as P13 from the video group and P10 from the game
 603 group, suggested a three-step rhythm of "video preview → guided practice → free practice" to reduce early errors. This
 604 constitutes a negative example of refinement of the main trend, suggesting that prior demonstration and synchronized
 605 stepping can more consistently deliver the benefits of embodied practice. (See Figure 5)

606 5.2 Agency and Pacing

607 As most participants reported that their core experience of "to what extent do I progress at my own pace, focus on key
 608 micro-operations, and practice repeatedly", they also reported that the rhythmic constraints of passive viewing and the
 609 need for step synchronization in "watching and doing," illustrating the differences in agency between the two media, as
 610 shown in Figure 6.

611 The video group reported that their pace of learning is constrained by the passive viewing process of the video.
 612 Participants in the non-interactive condition generally reported being "led" by the timeline, lacking the ability to adjust
 613 speed and perspective, and finding it difficult to pause and replay micro-movements (such as digging out seeds, stuffing,
 614 Manuscript submitted to ACM




Fig. 5. Embodied Doing. Interactive VR fosters a recoverable error-repair loop that yields parameter anchors (ranges + outcome cues). This mechanism predicts improvements on procedural/sequence measures rather than declarative MCQs, anticipating our quantitative pattern where item-level MCQs show limited separation while step-sequence metrics are expected to be more sensitive.

and closing the mouth), P3 from the video group stated that "I just followed the video completely. I didn't feel any control." These narratives not only address pacing but also touch upon the feeling of helplessness caused by the fixed camera position: "seeing but not seeing clearly" and "not being able to rewind keyframes." In non-interactive VR, participants wanted to "pause longer at difficult points or repeat a step without having to restart the entire segment," but lacked such mechanisms. In this same vein, the control group frequently expressed requests for "replay/slowdown/multiple perspectives."

Regardless of the medium, participants advocated for a step-synced mode with "one-step confirmation, pause/rewind/slow motion, and fast forward to skip waiting" to achieve time control and operation confirmation while doing things: learners across conditions proposed a step-synced mode with pause/skip/slow motion and explicit step confirmations.

While the game group significantly improved subjective agency (capable of grabbing, cutting, placing, and resetting), participants also noted that system pacing remained gated: many steps were "stuck" by the system's rhythm. "I can take initiative at a particular step, but the overall process remains gated" (conceptualized as "agency improves but remains gated"). Consequently, the interactive group also requested branching (allowing for alternate paths) and timeline control (pause/skip/fast-forward). This contrasts with the control group's central complaint of being "paced," forming a continuum, from complete passivity from the control group, to local initiative/global constraint from the game group.

Some participants from both groups also preferred "Preview → Guided Practice → Free Practice." While most participants favored synchronized stepping and immediate control, a minority of novices preferred a segmented approach: first previewing with an expert to establish a "skeleton," then moving into guided practice, and finally free practice to solidify fluency. They viewed this as a balance between "orientation, confidence, and consolidation." This, to some extent, explains why a completely free-flowing pace doesn't benefit everyone, suggesting that we need layered guidance beyond controlled stepping.

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697 Fig. 6. Agency and Pacing. Learners in both conditions demanded step-synced controls (pause/replay/slow-motion) precisely at
698 micro-operations (e.g., stuffing, blanching). The co-occurrence network links time-control codes to Immersion and Positive Affect,
699 anticipating higher IMI/GEQ scores in the interactive condition, while the weaker linkage to Competence foreshadows non-robust
700 effects on perceived competence.

703 5.3 Realism & Kitchen Semantics

704
705 5.3.1 *The physical/dynamic gap is the main bottleneck of the interactome.* Participants flagged idealized ingredients,
706 compressed timing, and inconsistent physics (weight, buoyancy, clipping, unstable placement) as breaks in realism that
707 hindered flow and confidence. Several contrasted the "glossy" look with the variability of market produce. Participants
708 expected real-kitchen semantics (hot lids, steam, gloves/tongs) and more faithful appliance controls (knobs vs. sliders),
709 noting that these cues scaffold safe transfer. P2 from the game group reported that "using a slider for the stove instead
710 of a knob feels unrealistic". Robust snapping/placement, friendly undo, and support for authentic alternatives (batch
711 blanching, bowl-first seasoning) were framed as essential for both realism and self-efficacy. "There should be a friendly
712 reset or correction mechanism", as P3 from the game group reported.

713
714
715 5.3.2 *Multisensory semantics and the implications of a "real kitchen".* The interactive group placed greater emphasis
716 on "real kitchen semantics" and safety cues: hot pot lids/steam, gloves/tongs, stove knobs, openable and closeable
717 drawers, and other "do-able" utensils and states, which anchored abstract steps to actionable norms (for example, "It's
718 unrealistic for a stove to have sliders instead of knobs"). Concise narration paired with focused visuals was repeatedly
719 cited as helpful: visuals conveyed step order and micro-technique; narration offered rationale and cultural framing. "he
720 voice was like reminders in my ear, and the visuals were very direct", as P1 from the video group suggested. Headset
721 immersion channeled attention to fine manipulations (coring, stuffing), reducing distraction. Several described an
722 increased sense of "taking it seriously." The lack of haptics, heat, and smell constrained tacit cues (stickiness, doneness,
723 aroma), leaving some uncertainty about transfer to real kitchens: "I couldn't feel the stickiness; the steamer looked hot,
724 but I couldn't feel the heat," as P2 from the game group reported.

729 The two groups have different emphases in their pursuit of "realism": the game group focuses on "being able to make
730 it look real" (physical consistency and instrument semantics), while the video group focuses on "looking real" (camera
731 position, rhythm, and sensory loss). Even so, there are still negative examples and mitigating opinions: some video
732 participants believe that "it's just watching, and the lack of touch warmth is not a big problem", but they also admit
733 that this limits the transition from "understanding" to "being able to do it". Some of the game group participants gave
734 positive comments on the lighting and cleanliness of the scene, while pointing out that "the water collection seemed to
735 appear instantly" and "the interaction of removing the pulp was awkward", which were inconsistent with reality. This
736 shows that the delicate balance between aesthetic appeal and physical reality still needs to be grasped.
737
738

739 5.4 Cultural Salience: Action Masking vs Narrative Uptake

740 We observed a clearly differentiated trajectory under the two media conditions: the action load of interactive VR creates
741 "action masking" at key steps, making cultural information easy to overlook, while the narrative continuity of VR video
742 is more conducive to "narrative absorption".
743
744

745 5.4.1 *Action Masking*. In the interactive condition, participants generally reported being completely absorbed by the
746 task itself, diluting their understanding of the intangible cultural heritage/Hakka context due to the task load. As P3
747 from the game group reported that "When doing the task, my attention was more focused on the task in front of me...
748 I absorbed the narration more limitedly." Most people from the game group "didn't know stuffed bitter melon was
749 a Hakka dish/intangible cultural heritage; the experience hardly conveyed any clear information about 'intangible
750 cultural heritage,' so my perception hasn't changed much." As the participants from this group suggested that this
751 "obscuration" doesn't reflect a lack of interest in culture, but rather a misalignment between presentation and timing.
752 Several participants proactively suggested embedding lightweight, "on-the-spot" prompts (information cards/tidbits
753 pop-up, or NPC guidance) at key steps to connect cultural points within the context of the process: "Information
754 cards/tidbits pop-up after completing the steps (concisely highlighting the Hakka and intangible cultural heritage
755 background)." Direct expressions of "still unaware/unsure this is Hakka intangible cultural heritage" also appeared in
756 the coding sheet and transcriptions, as 11 also stated that "I didn't know it was a Hakka dish...my perception hasn't
757 changed much."
758
759

760 5.4.2 *Narrative Absorption*. In contrast, the continuous narrative and multimodal explanation of VR videos are easier
761 to "see and hear", thus forming value recognition and respect. In general, the video group suggested that the video
762 mentioned the significance of Hakka cuisine as an intangible cultural heritage, which made me realize that it's not just
763 any home-cooked dish, but a craft with historical value. P6 from the video group stated that "feel like watching videos
764 in VR allows me to focus more...it helps me to remember." and P4 stated that "the VR glasses...use a very large panel,
765 which creates a strong visual impact" to see the cooking process more immersively. Several participants experienced a
766 change in their attitudes after "clarifying that it's intangible cultural heritage/why it's intangible cultural heritage".
767 P3 from the video group stated that "I used to think Hakka cuisine was just an ordinary home-cooked meal, but this
768 time I learned that stuffed bitter melon is an intangible cultural heritage," and P1 reflected that "I never thought...such a
769 common dish could be considered...intangible cultural heritage. I was surprised."
770
771

772 5.5 Game Experience Effects on Players

773 To compare the effects of VR video and VR game interventions across multiple constructs measured with a Likert
774 scale, we conducted Wilcoxon signed rank tests due to the paired and nonparametric nature of the data. Three primary
775

781 constructs were evaluated: Immersiveness, Interest & Motivation, and Cultural Awareness, along with their respective
782 subdimensions.
783

784 *5.5.1 Interest & Motivation (IMI).* As shown in Figure 7, analysis of the Intrinsic Motivation Inventory revealed that
785 participants in the game group reported higher Interest (median = 5.6, IQR = 5.2–6.0) compared to the video group
786 (median = 4.6, IQR = 4.4–5.0), and this difference was statistically significant (Wilcoxon rank-sum test, $p < 0.05$).
787 Perceived Competence did not differ significantly between groups (game median = 4.6, IQR = 4.3–5.0; video median = 4.5,
788 IQR = 4.0–5.0; $p = 0.219$, ns). The increase in interest reflects the motivational pull of interactivity and narrative-driven
789 tasks. However, the lack of difference in perceived competence suggests that both modalities offered a similar level of
790 challenge and clarity regarding task requirements. The improvement in immersion and positive emotions is consistent
791 with the subjective reports of "first-person close-up + controlled stepping"; however, the sense of competence is not
792 significant, which is consistent with the explanation in the discussion that "single exposure + lack of touch/heat/smell
793 makes it difficult to form stable self-efficacy."
794

795 *5.5.2 Game Experience (GEQ).* As shown in Figure 8, the game group scored higher on Sensory & Imagery (median =
796 5.6, IQR = 5.2–6.0) than the video group (median = 4.8, IQR = 4.6–5.0; $p < 0.05$), and on Positive Affect (game median =
797 5.7, IQR = 5.4–6.0; video median = 4.8, IQR = 4.6–5.0; $p < 0.05$). It demonstrated a clear advantage of VR game over VR
798 video in both Sensory & Imaginative Engagement and Positive Affect. The significant improvement in sensory and
799 imaginative engagement suggests that VR game successfully strengthen participants' perceptual immersion. Similarly,
800 the higher Positive Affect under the VR game condition reflects a more emotionally rewarding experience.
801

802 *5.5.3 Cultural-Heritage Awareness.* As shown in Figure 9, cultural Awareness analysis showed significant differences
803 in three of the four sub-dimensions. Transmission (game median = 5.6, IQR = 5.2–6.0; video median = 4.6, IQR = 4.2–5.0;
804 $p < 0.05$), Vitality (game median = 5.3, IQR = 5.0–5.6; video median = 4.7, IQR = 4.4–5.0; $p < 0.05$), and Association
805 (game median = 5.7, IQR = 5.4–6.0; video median = 4.6, IQR = 4.4–5.0; $p < 0.05$) were significantly higher in the game
806 group. Localization did not differ significantly (game median = 4.7, IQR = 4.5–5.0; video median = 5.2, IQR = 5.0–5.4; $p =$
807 0.919, ns). It revealed significant improvements in Transmission, Vitality, and Association for the VR game condition,
808 while Localization showed no difference. The non-significant difference in Localization probably suggests that both
809 modalities were equally effective or equally limited in illustrating how cultural practices adapt to new contexts. "Action
810 masking" makes it easier to miss local narratives during the moment of action, explaining the lack of prominence of
811 localization. However, the interface strategy of "embedding cultural elements at key steps" has the potential to improve
812 this dimension. The discussion also pointed out that the generation of a sense of place relies on on-site context and
813 co-presence, requiring the activation of local cues in situations such as the kitchen, the market, and the museum.
814

815 *5.5.4 Procedural Knowledge Quiz.* As shown in Figure 10, a chi-square test on multiple-choice question accuracy
816 revealed that most questions showed no statistically significant differences between VR video and VR game conditions
817 ($p > 0.05$). Although the VR game group tended to have higher correct rates for some items, these differences did not
818 reach statistical significance. In qualitative tests, participants viewed the resumable trial-and-error process of "making a
819 mistake—resetting—redoing" as a memory anchor, and more often mentioned "parameter range + result clues" (such as
820 thickness, tightness, color/resistance) as aiding recall and transfer. This may explain why the individual differences in
821 MCQ questions were not significant, while real-world operational/parametric indicators may be more sensitive.
822

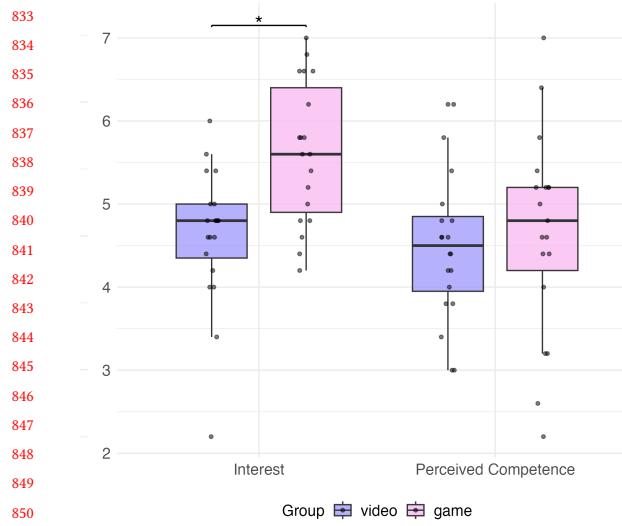


Fig. 7. The results of Interest Motivation Inventory. Significance levels are indicated with * for $p \leq 0.05$.

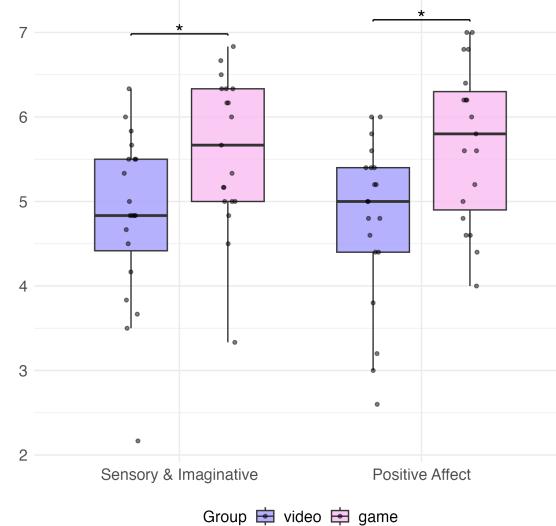


Fig. 8. The results of Game Experience. Significance levels are indicated with * for $p \leq 0.05$.

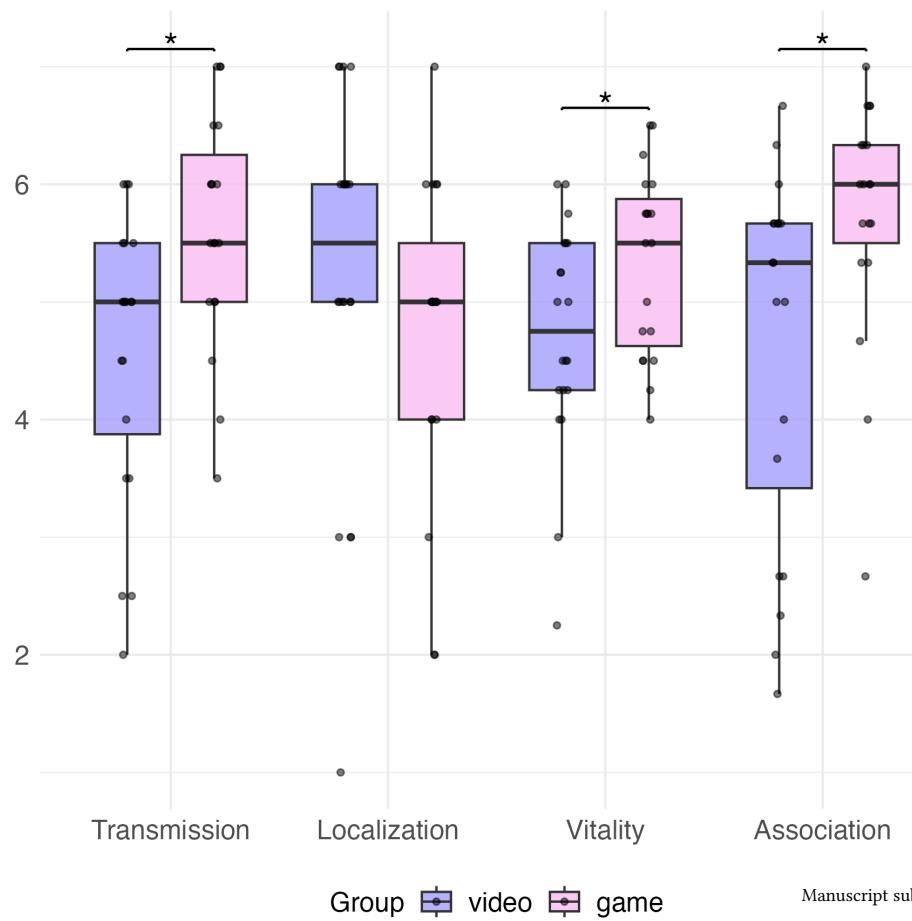


Fig. 9. The results of Cultural Awareness. Significance levels are indicated with * for $p \leq 0.05$.

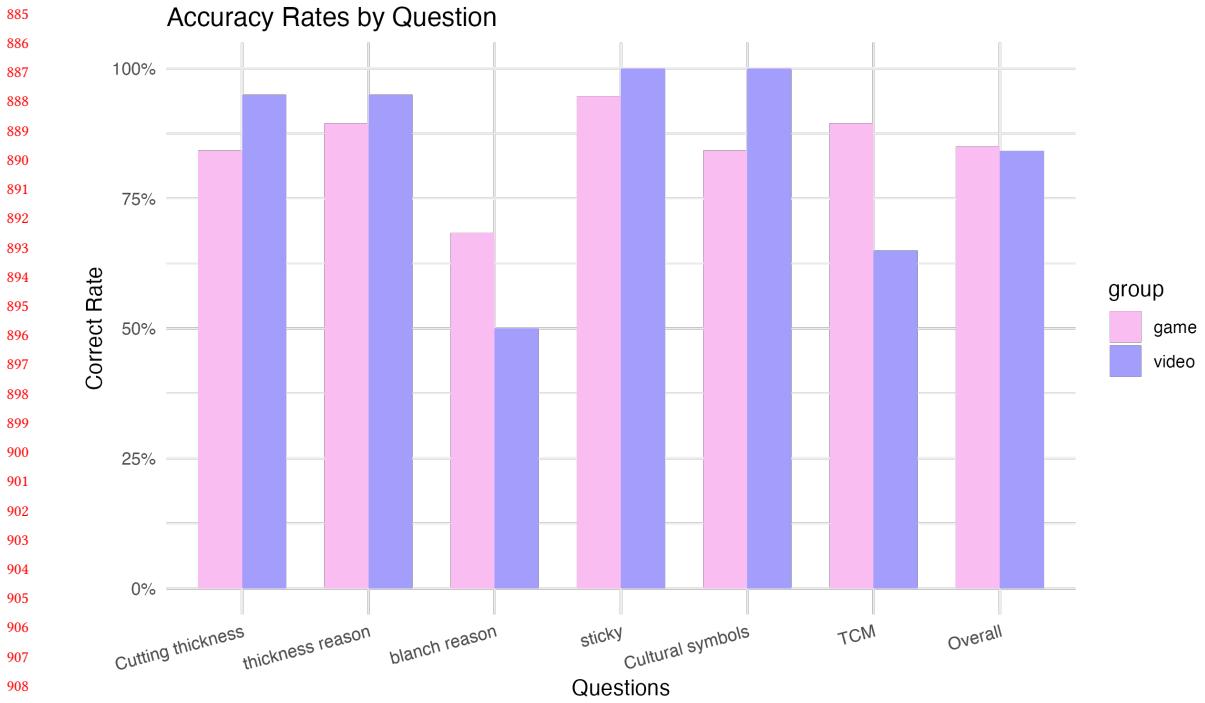


Fig. 10. The results of accuracy rates with no significance.

6 Discussion

Our goal in this study was to examine how an embodied VR cooking game can encode and communicate process-rich, tacit culinary know-how (RQ1), how people actually engage with those mechanics in situ (RQ2), and whether such engagement changes interest, knowledge, and awareness of ICH (RQ3).

6.1 From watching to enacting ICH

Our findings show that the interactive VR condition—where participants enacted micro-techniques and could make recoverable mistakes—produced markedly higher sensory/imaginative engagement and positive affect than a matched VR video. Interview accounts linked durable “know-how” to action, pacing control, and friendly error recovery (e.g., undo/respawn). Together, these results support the claim that process-rich ICH is best represented by media that close the perception-action loop rather than by observational visuals alone [2, 65]. They extend prior immersive-heritage work that used interaction to scaffold situated technique learning (e.g., conservation tasks) by translating that logic to culinary ICH, where time-temperature windows, quantity ranges, and texture cues constitute the grain of expertise [2, 65]. In contrast to 360° heritage tours that heighten presence yet remain observational, our results highlight error-tolerant, feedback-rich loops (e.g., step-synchronous timers, on-step quantity feedback) as mechanisms for building enactable routines rather than passive recall [65]. This representational stance is aligned with embodied/grounded cognition, which posits that memory and understanding are shaped by modal simulation and situated action [? ?].

937 A clear boundary also emerged: without haptics, heat, or smell, participants lacked tacit cues (e.g., stickiness or
938 doneness). HCI studies show that adding olfactory and thermal feedback can increase presence and improve decision
939 fidelity in food/VR settings, suggesting a feasible augmentation path that preserves safety and tractability in lab
940 deployments [46, 54].
941

942 6.2 Local Identity and Situated Belonging

943 Quantitatively, the strongest cultural-awareness gain was on Association; qualitatively, participants reframed an
944 “everyday” dish as worthy heritage. We interpret this as identity alignment: enacting techniques alongside a culturally
945 grounded narrative positioned learners not only as observers but as inheritors. This echoes intercultural AR work
946 showing that well-timed, in-situ cues and role-taking can scaffold belonging and mutual recognition [?]. At the same
947 time, Localization did not differ between conditions, indicating that place-making is partly dependent on context and
948 community co-presence—implicating deployments in kitchens, markets, or museums where site-specific associations
949 can be activated [65]. In the broader media ecology, platform studies of Douyin/TikTok document how short-video
950 cultures scale ICH visibility and pride while risking spectacle and flattening; our results suggest a complementary
951 pipeline where short video sparks curiosity and VR anchors identity through hands-on rehearsal [53, 77].
952

953 6.3 Competence, Motivation, and the Role of Multisensory Feedback

954 Despite higher interest and affect, perceived competence did not differ between conditions. Framed by self-determination
955 theory (SDT), this pattern implies that while autonomy needs were supported (interactivity, pacing), competence may
956 require longer practice horizons, richer sensory feedback, and criterion-referenced successes—conditions a single
957 session cannot fully provide [? ?]. Meta-evidence on VR/simulation training similarly finds robust boosts to motivation
958 and near-term knowledge, with skills and confidence sensitive to task fidelity, feedback, and dosage [8]. Consistent with
959 this, participants requested knife damping, pour/tilt physics, lightweight haptics/thermal cues, and granular replay—all
960 mapping to established design levers for tacit judgment in food contexts [46, 54].
961

962 6.4 Design Implication

963 Our study of Hakka Kitchen highlights several design implications for developing game-based immersive applications
964 aimed at transmitting intangible cultural heritage (ICH). While grounded in the specific case of cooking stuffed bitter
965 melon, these insights extend to other culinary and non-culinary ICH practices, such as traditional crafts, performing
966 arts, and rituals.
967

968 6.4.1 *Expert Knowledge as Design Drivers.* Expert interviews play a critical role in shaping our design decisions, as
969 discussed in Section 3.2. Many forms of ICH—such as weaving, calligraphy, or pottery—require skills that are difficult to
970 master, demand extensive practice, or rely on tacit professional knowledge. Expert practitioners are uniquely positioned
971 to identify these critical learning points, enabling designers to translate them into appropriate game mechanics
972 or feedback systems that support player learning. We suggest future immersive ICH games should therefore treat
973 practitioner insights not only as cultural content to be represented, but as design specifications that directly inform the
974 design of game mechanics, hints, and error-responsive feedback.
975

976 6.4.2 *Embodied Interaction for Tacit Knowledge Transfer.* Our game leveraged natural hand interactions, audiovisual
977 feedback, real-world physics and environment to approximate embodied practices. These interactions provided mean-
978 ingful sensorimotor engagement that enhanced the embodied learning of the cooking process while simultaneously
979

989 deepening the player's immersion in the game. Yet players highlighted shortcomings when audiovisual fidelity was lacking (e.g., absence of real pouring sounds, no visual cue of steam, or no blanching color change). Even small discrepancies
 990 between simulated and real-world cues were reported to reduce immersion and diminish engagement.
 991

992 For intangible cultural heritage, the demand for high realism is not simply a matter of visual polish but stems from
 993 the embodied nature of knowledge itself. Skills in cooking and in analogous practices depend heavily on multisensory
 994 integration: color cues signal progress, the amount of applied force influences the outcome, and tactile resistance guides
 995 technique. When these perceptual anchors are missing, ICH transmission risks being reduced to partial or superficial
 996 knowledge transfer. Moreover, players often approach VR with an expectation of faithful real-world simulation,
 997 particularly when the interactions are explicitly designed to mirror real-life scenarios. When the virtual environment
 998 fails to provide the expected sensory realism, players experience disappointment and disengagement.
 999

1000 Therefore, we suggest future VR ICH systems to carefully align embodied interactions with high-fidelity sensory
 1001 realism across the virtual environment, physics, and core interactions. In the case of culinary ICH, for example, visual
 1002 color changes should be faithfully represented to present procedural information. Beyond vision and sound, the
 1003 experience can be enriched with lightweight olfactory and thermal cues (e.g., the aroma of steaming food, subtle warmth
 1004 radiating from a pot), which heighten presence and reinforce decision-making fidelity [46, 54].
 1005

1006 *6.4.3 Engagement Strategies for ICH Learning.* A recurring challenge in serious games is that their educational orientation
 1007 often comes at the expense of engagement and enjoyment. Prior studies note that serious games can lead to reduced
 1008 player motivation and lower willingness to persist through tasks compared to purely entertainment-focused games
 1009 [14][38]. This tension between instructional depth and playful engagement is particularly pronounced in heritage
 1010 contexts, where cultural accuracy and authenticity are prioritized but may result in experiences that resemble tutorials
 1011 rather than games.
 1012

1013 In our design, we sought to mitigate this tension through a set of engagement strategies—Progress Indicator, Unlocking
 1014 Cultural Narratives, and Achievement Badge, as discussed in section 3.3.5. These elements supported sustained
 1015 engagement without diluting the cultural and procedural authenticity of the experience. However, post-play feedback
 1016 revealed that a few participants still perceived the system as “less like a game” and “not very enjoyable.” To address
 1017 this, future iterations could expand the repertoire of playful mechanics. For example, Chef Lin could evolve into a fully
 1018 embodied NPC capable of dynamic interaction, or the cooking tasks could be extended into cooperative multiplayer
 1019 modes that foster collaboration, or competitive formats where players prepare dishes and receive scores from virtual
 1020 tasters. Such approaches would increase playfulness while reinforcing cultural learning. Importantly, however, these
 1021 designs must balance playfulness with cultural authenticity to ensure that playful mechanics enhance rather than
 1022 trivialize ICH knowledge. For broader ICH applications, playful engagement should be rooted in the embodied practices
 1023 of each tradition. Playful mechanics can be designed to amplify the mastery embedded in the practice itself, thereby
 1024 creating both engaging gameplay and meaningful cultural transmission.
 1025

1026 *6.4.4 Feedback Mechanisms as Scaffolds for ICH Learning.* Another central implication from our design is the importance
 1027 of feedback mechanisms in supporting the transfer of tacit knowledge within intangible cultural heritage (ICH). In Hakka
 1028 Kitchen, we implemented layered feedback, including confirmation and rejection audio, targeted reminders for critical
 1029 errors, and narration that reinforced key knowledge only after players corrected their mistakes. Participants reported
 1030 that these mechanisms made learning more memorable. Because many ICH practices are traditionally acquired through
 1031 cycles of trial, error, and adjustment, we suggest designers of VR ICH experiences treat feedback as scaffolding—guiding
 1032 players through the learning process by making errors informative rather than punitive.
 1033

6.5 Limitation and Future Works

6.5.1 *Attention Allocation.* We included Chef Lin’s narratives to enhance players’ awareness of intangible cultural heritage. However some participants reported being so focused on completing each stage of the cooking task that they did not fully attend to Chef Lin’s audio narration. This reflects a common tension in interactive learning environments: when cognitive load is directed toward task execution, narrative or cultural context delivered in parallel may be overlooked. Prior work in multimedia learning highlights this split-attention problem [7][45], where learners struggle to integrate multiple streams of information simultaneously.

We attempted to mitigate this issue by triggering narrations immediately after step completion—when players had no competing tasks or time pressure—but this strategy was not always sufficient. This suggests that the issue may not only be about split attention during action, but also about how players prioritize goals in a task-oriented environment. As a result, the effectiveness of our narrative design in fostering cultural awareness may be underestimated since some players likely engaged more with procedural tasks than with the cultural storytelling.

Future work should explore design solutions to re-balance attention between procedural tasks and cultural storytelling. One possible direction is to augment the role of Chef Lin by giving him a virtual body and enabling real-time interaction with players. Instead of passively listening to disembodied narration, players could engage with Chef Lin as a visible mentor who gestures, demonstrates, or reacts to their performance while telling the cultural stories. This embodied presence could capture players’ attention more effectively and reduce the tendency to deprioritize narrative in favor of task execution.

6.5.2 *Hint Usage Variability.* Participants varied in how often they used the optional hint system, which introduced uneven levels of scaffolding across the sample. For some, frequent reliance on hints may have reduced cognitive effort and supported more accurate procedural execution, while others who avoided hints risked missing procedural knowledge about the dish and had to rely on trial-and-error or common sense to progress. This variability complicates interpretation of knowledge outcomes, as differences may partly reflect how much instructional support participants chose to access rather than the inherent affordances of the immersive and interactive VR system.

Future studies should more systematically examine the role of hints by manipulating their availability or timing—for example, making them always available, always withheld, or adaptively triggered based on performance. Logging and analyzing hint usage patterns could also clarify whether hints primarily reduce frustration, transmit deeper cultural knowledge, or simply act as optional aids without strong impact on learning.

6.5.3 *Study Design.* Our evaluation was conducted in a single lab-based session, with dependent measures collected immediately after exposure. While this design allowed for controlled comparisons between the interactive VR cooking game and the non-interactive VR video control, it did not capture long-term retention, transfer of knowledge to real kitchens, or sustained cultural awareness over time. For example, although both groups showed immediate gains in procedural knowledge, it remains unclear whether these differences would persist, diminish, or widen over weeks or months. Similarly, cultural awareness and motivational effects may evolve differently outside of the lab context, particularly when players encounter related practices in their everyday lives. Moreover, the short exposure duration and immediate testing window limited opportunities for consolidation, and the factual detail-oriented quiz items may not have fully captured the embodied and conceptual benefits of interactive learning.

Future research should employ longitudinal designs to assess durability and transferability of learning. This includes testing whether embodied VR practice supports better long-term procedural knowledge, deeper cultural appreciation,

1093 or real-world cooking uptake compared to passive VR video viewing. Complementary measures that probe conceptual
1094 understanding and transfer, beyond factual recall, would also provide a fuller picture of learning outcomes. Field studies
1095 in real-world kitchens could further reveal how lab-based outcomes translate into authentic settings and whether
1096 embodied interaction produces more sustainable impacts than observational formats.
1097

1098 *6.5.4 Control Design.* We used a VR video as the control condition to isolate the role of interactivity while keeping
1099 procedural content constant. However, this design carries two limitations. First, although we selected footage that
1100 closely mimicked a chef's viewpoint, mismatches in angle and framing remained compared to a true first-person
1101 perspective. Such discrepancies may have introduced perceptual bias, as participants in the control condition could
1102 interpret procedural steps differently than if they had viewed them directly from the chef's eyes. Future control videos
1103 could be captured using head-mounted or stereoscopic equipment worn by the chef to ensure a more authentic alignment
1104 of perspective, thereby reducing perceptual mismatches and strengthening the validity of cross-condition comparisons.
1105

1106 Second, watching a seamless, error-free demonstration may inflate immediate procedural knowledge scores for
1107 the control group, as participants observe an ideal execution without the possibility of making mistakes. By contrast,
1108 interactive gameplay exposes participants to trial-and-error, which is theorized to foster more durable learning through
1109 embodied error-based practice [48]. This raises the possibility that our design underestimated the added value of
1110 interactivity when judged only by short-term outcomes. Future longitudinal studies should test whether the initial
1111 knowledge advantage of passive video viewing persists or diminishes over time compared to interactive practice,
1112 thereby clarifying whether VR's trial-and-error learning supports more durable retention.
1113

1114 *6.5.5 Demographics.* Our participant sample consisted of individuals aged 20–30 years, all of Chinese background,
1115 mostly undergraduates or above, with considerable variation in regional origin and durations spent overseas. At the
1116 level of internal validity, the demographic similarity across both the VR game and VR video (control) groups means that
1117 our comparisons between conditions are not biased by differences in age, education, or cultural background. However,
1118 at the level of external validity, this homogeneity constrains the generalizability of our findings.
1119

1120 **Limited Education Representation.** Our participant sample was largely composed of undergraduates or above.
1121 Higher education has been consistently identified as a strong predictor of cultural participation and interest across
1122 diverse contexts [26]. Consequently, our participants may have entered the study with elevated baseline interest
1123 or engagement, potentially amplifying the game's apparent effectiveness or masking differences visible in broader
1124 populations. For example, less-educated groups might display lower baseline familiarity with intangible cultural heritage
1125 (ICH) and therefore exhibit stronger relative knowledge gains, or alternatively, they might engage less with narrative
1126 framing due to differences in prior exposure to heritage discourses.
1127

1128 **Limited Cultural Background Representation.** The all-Chinese participants limit the generalizability of our
1129 findings to cross-cultural audiences. Prior research in cultural psychology demonstrates that cultural background
1130 strongly shapes how individuals interpret, value, and engage with heritage practices [31][60]. Within this shared
1131 context, Chinese participants may have found Chef Lin's narratives more engaging because of shared cultural scripts
1132 and culinary traditions. However, even within a homogeneous cultural background, several participants questioned
1133 whether stuffed bitter melon should be considered an "authentic" Hakka dish, noting that they had encountered it in
1134 other regions or viewed it as an everyday common dish. This perception may have dampened their interest in learning,
1135 suggesting regional variation and personal food histories can influence how cultural narratives are received.
1136

1137 Including participants from non-Chinese cultural backgrounds could reveal different dynamics. For instance, those
1138 unfamiliar with the dish might perceive Chef Lin's stories as novel and thus more engaging, while others may struggle
1139 to relate to the dish. Future research could explore how cross-cultural differences in food history and perception
1140 might affect the effectiveness of VR-based cooking instruction. Additionally, investigating the role of personal food
1141 histories in shaping cultural narratives could provide insights into how individuals interpret and engage with heritage
1142 practices.
1143

1145 to connect with embedded cultural scripts, resulting in diminished interest and reduced awareness of the heritage
1146 message.

1147 Future studies should recruit participants with more varied educational backgrounds and from different cultural
1148 contexts. Expanding to less-educated groups and non-Chinese participants would help reveal whether engagement,
1149 knowledge, and awareness outcomes generalize across broader populations and provide insight into how cultural
1150 familiarity or distance influences learning in VR-based ICH experiences.

1151
1152
1153 6.5.6 *Applicability Across Traditions.* Since our study focused on a single culinary practice—stuffed bitter melon, its
1154 findings are limited in generalizability to other culinary traditions and intangible cultural heritage practices. Culinary
1155 practices vary widely in complexity, required tacit knowledge, and cultural symbolism, and it is not yet clear whether the
1156 same design choices would transfer seamlessly to other dishes or to non-culinary forms of intangible cultural heritage.
1157 To broaden the scope, future work could develop multi-dish curricula that cover a variety of recipes, allowing for
1158 comparisons across dishes with different technical and symbolic demands. This would enable testing which interaction,
1159 feedback, and narrative strategies are robust across contexts, and which require domain-specific adaptation, thereby
1160 strengthening the generalizability of immersive game-based representation of ICH.

1161 7 Conclusion

1162 Our study demonstrates that representing intangible cultural heritage through interactive procedures rather than static
1163 content fosters deeper sensory engagement and cultural awareness. By actively enacting the steps of a traditional dish,
1164 players not only acquire procedural know-how but also experience the embodied cultural meanings embedded in the
1165 practice. This suggests that VR's capacity to model interaction and feedback can enrich how intangible traditions are
1166 transmitted to broader audiences, extending beyond the limits of videos or text. More broadly, immersive and interactive
1167 representations hold promise for strengthening public appreciation and safeguarding of diverse ICH practices across
1168 domains.

1169 References

1170 [1] Joe Askren and Wayne James. 2021. Experiential learning methods in culinary course can bridge the gap: Student perceptions on how hands-on
1171 curriculum prepares them for industry. *Journal of Hospitality & Tourism Education* 33, 2 (2021), 111–125.

1172 [2] Francesco Bellotti, Riccardo Berta, Alessandro De Gloria, Annamaria D'ursi, and Valentina Fiore. 2012. A serious game model for cultural heritage.
1173 *Journal on Computing and Cultural Heritage* 5, 4 (Dec. 2012), 1–27. <https://doi.org/10.1145/2399180.2399185>

1174 [3] Ben Boer. 2019. The environment and cultural heritage. *Boer, B., 'The Environment and Cultural Heritage,' The Oxford Handbook of International
1175 Cultural Heritage Law* (2019).

1176 [4] Maria Bonn, Lori Kendall, and Jerome McDonough. 2016. Preserving intangible heritage: Defining a research agenda. *Proceedings of the Association
1177 for Information Science and Technology* 53, 1 (2016), 1–5.

1178 [5] Dimitrios Buhalis, Daniel Leung, and Michael Lin. 2023. Metaverse as a disruptive technology revolutionising tourism management and marketing.
1179 *Tourism management* 97 (2023), 104724.

1180 [6] Irene Capecchi, Iacopo Bernetti, Tommaso Borghini, Alessio Caporali, and Claudio Saragosa. 2024. Augmented reality and serious game to engage
1181 the alpha generation in urban cultural heritage. *Journal of Cultural Heritage* 66 (March 2024), 523–535. <https://doi.org/10.1016/j.culher.2024.01.004>

1182 [7] Paul Chandler and John Sweller. 1991. Cognitive load theory and the format of instruction. *Cognition and Instruction* 8, 4 (Dec 1991), 293–332.
1183 https://doi.org/10.1207/s1532690xci0804_2

1184 [8] Feng-Qin Chen, Yu-Fei Leng, Jian-Feng Ge, Dan-Wen Wang, Cheng Li, Bin Chen, and Zhi-Ling Sun. 2020. Effectiveness of Virtual Reality in Nursing
1185 Education: Meta-Analysis. *Journal of Medical Internet Research* 22, 9 (Sept. 2020), e18290. <https://doi.org/10.2196/18290>

1186 [9] Francesca Cominelli and Xavier Greffe. 2012. Intangible cultural heritage: Safeguarding for creativity. *City, Culture and Society* 3, 4 (2012), 245–250.

1187 [10] Francesca Cominelli and Xavier Greffe. 2013. Why and how intangible cultural heritage should be safeguarded. In *Handbook on the economics of
1188 cultural heritage*. Edward Elgar Publishing, 402–418.

1189 [11] Gregory Currie. 1999. Visible traces: documentary and the contents of photographs. *The Journal of Aesthetics and Art Criticism* 57, 3 (1999), 285–297.

1197 [12] Robertas Damaševičius, Rytis Maskeliūnas, and Tomas Blažauskas. 2023. Serious games and gamification in healthcare: a meta-review. *Information*
1198 14, 2 (2023), 105.

1199 [13] Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. 2011. From game design elements to gamefulness. *Proceedings of the 15th*
1200 *International Academic MindTrek Conference: Envisioning Future Media Environments* (Sep 2011), 9–15. <https://doi.org/10.1145/2181037.2181040>

1201 [14] Ralf Dorner, Stefan Gobel, Wolfgang Effelsberg, and Josef Wiemeyer. 2018. *Serious games foundations, concepts and Practice*. Springer International
1202 Publishing Springer.

1203 [15] Yanqing Fang. 2024. Current situation, problems and countermeasures of intangible cultural heritage inheritance and protection in college education.
1204 *Academic Journal of Humanities & Social Sciences* 7, 8 (2024), 227–236.

1205 [16] Charles H Feldman and Shahla Wunderlich. 2023. Cultural food distancing: a conceptual discourse on the evolution of seminal to present and
1206 future models of traditional food practices. *British Food Journal* 125, 5 (2023), 1936–1952.

1207 [17] Alexander Wieck Fjaeldstad and Barry Smith. 2022. The effects of olfactory loss and parosmia on food and cooking habits, sensory awareness, and
1208 quality of life—a possible avenue for regaining enjoyment of food. *Foods* 11, 12 (2022), 1686.

1209 [18] Lucia Foglia and Robert A Wilson. 2013. Embodied cognition. *Wiley Interdisciplinary Reviews: Cognitive Science* 4, 3 (2013), 319–325.

1210 [19] Kexue Fu, Ruishan Wu, Yuying Tang, Yixin Chen, Bowen Liu, and Ray Lc. 2024. "Being Eroded, Piece by Piece": Enhancing Engagement and
1211 Storytelling in Cultural Heritage Dissemination by Exhibiting GenAI Co-Creation Artifacts. In *Designing Interactive Systems Conference*. ACM,
1212 Copenhagen Denmark, 2833–2850. <https://doi.org/10.1145/3643834.3660711>

1213 [20] Xinyi Fu, Yaxin Zhu, Zhijing Xiao, Yingqing Xu, and Xiaojuan Ma. 2020. RestoreVR: generating embodied knowledge and situated experience of
1214 Dunhuang mural conservation via interactive virtual reality. In *Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems*.
1215 1–13.

1216 [21] Jorge Garcia-Fernandez and Leonor Medeiros. 2019. Cultural heritage and communication through simulation videogames—A validation of
1217 Minecraft. *Heritage* 2, 3 (2019), 2262–2274.

1218 [22] Maja Goršič, Minh Ha Tran, and Domen Novak. 2018. Cooperative cooking: A novel virtual environment for upper limb rehabilitation. In *2018 40th*
1219 *Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)*. IEEE, 3602–3605.

1220 [23] Dimitar Gyaurov, Carlo Fabricatore, and Andrea Bottino. 2022. Features of entertainment digital games for learning and developing complex
1221 problem-solving skills: A protocol for a systemic review. *International Journal of Qualitative Methods* 21 (2022), 16094069221128491.

1222 [24] Steven Haussmann, Oshani Seneviratne, Yu Chen, Yarden Ne'eman, James Codella, Ching-Hua Chen, Deborah L. McGuinness, and Mohammed J.
1223 Zaki. 2019. FoodKG: A Semantics-Driven Knowledge Graph for Food Recommendation. In *The Semantic Web – ISWC 2019*, Chiara Ghidini, Olaf
1224 Hartig, Maria Maleshкова, Vojtěch Svátek, Isabel Cruz, Aidan Hogan, Jie Song, Maxime Lefrançois, and Fabien Gandon (Eds.), Vol. 11779. Springer
1225 International Publishing, Cham, 146–162. https://doi.org/10.1007/978-3-030-30796-7_10 Series Title: Lecture Notes in Computer Science.

1226 [25] Yihao He. 2023. ShadowPlayVR: Understanding traditional shadow puppetry performance techniques through non-intuitive embodied interactions.
1227 *29th ACM Symposium on Virtual Reality Software and Technology* (Oct 2023), 1–2. <https://doi.org/10.1145/3611659.3617226>

1228 [26] Riie Heikkilä. 2022. What do we know about cultural participation and non-participation? *Palgrave Studies in Cultural Participation* (2022), 37–48.
1229 https://doi.org/10.1007/978-3-031-18865-7_3

1230 [27] UNESCO Intangible Cultural Heritage. 2003. Text of the Convention for the Safeguarding of the Intangible Cultural Heritage. In *Tillgänglig på*
1231 *Internet: https://ich.unesco.org/en/convention [hämtad Mars 2, 2020]* J White, W. et al.(2018) *Tabletop role-playing games. I Deterding, S. Zagal, J.(red.)*
1232 *Role-Playing Game Studies: Transmedia Foundations*. Routledge Taylor & Francis Group Østbye, H. et al.(2003) *Metodbok för medievetenskap*. Malmö:
1233 Liber AB.

1234 [28] Yumeng Hou, Sarah Kenderdine, Davide Picca, Mattia Egloff, and Alessandro Adamou. 2022. Digitizing Intangible Cultural Heritage Embodied:
1235 State of the Art. *Journal on Computing and Cultural Heritage* 15, 3 (Sept. 2022), 1–20. <https://doi.org/10.1145/3494837>

1236 [29] Yan Huang and Shengdan Yang. 2025. Mapping Suzhou's Cultural Heritage Sites: Exploring Gusu Prosperous Map through Data Visualization.
1237 *Journal on Computing and Cultural Heritage* (April 2025), 3730589. <https://doi.org/10.1145/3730589>

1238 [30] W. A. IJsselsteijn, Y. A. W. de Kort, and K Poels. 2013. The Game Experience Questionnaire. Technische Universiteit Eindhoven.

1239 [31] Tracy Ireland, Steve Brown, Kate Bagnall, Jane Lydon, Tim Sherratt, and Sharon Veale. 2024. Engaging the everyday: The concept and practice of
1240 'everyday heritage'. *International Journal of Heritage Studies* 31, 2 (Oct 2024), 192–215. <https://doi.org/10.1080/13527258.2024.2417066>

1241 [32] Kristiina Janhonen, Kaisa Torkkeli, and Johanna Mäkelä. 2018. Informal learning and food sense in home cooking. *Appetite* 130 (2018), 190–198.

1242 [33] Hendrik Janter, Nicolas Pirson, Liesl Spruyt, Wouter Coenen, Jasper De Kepper, Jeroen Wauters, Maria Aufheimer, Nianmei Zhou, and Luc
1243 Geurts. 2023. CookT: A Fast-Paced Collaborative Cooking Game with Interactive Objects. In *Companion Proceedings of the Annual Symposium on*
1244 *Computer-Human Interaction in Play*. 274–279.

1245 [34] Guilherme Henrique Koerich, Fernanda A Ferreira, José António Costa Alves da Silva, and Araci Hack Catapan. 2024. Learning experiences in the
1246 culinary classroom: Identifying barriers and enablers in the practical teaching-learning process in gastronomy. *Journal of Hospitality, Leisure, Sport*
1247 & Tourism Education 35 (2024), 100508.

1248 [35] Cuiting Kong. 2024. Digital Diabolo: A virtual reality game for the presentation of Intangible Cultural Heritage through Participatory design.
1249 *Proceedings of the Participatory Design Conference 2024: Situated Actions, Doctoral Colloquium, PDC places, Communities - Volume 3* (Aug 2024),
1250 19–23. <https://doi.org/10.1145/3661456.3666052>

1251 [36] Thomas Kosch, Kevin Wennrich, Daniel Topp, Marcel Muntzinger, and Albrecht Schmidt. 2019. The digital cooking coach: using visual and auditory
1252 in-situ instructions to assist cognitively impaired during cooking. In *Proceedings of the 12th ACM international conference on pervasive technologies*
1253 Manuscript submitted to ACM

1249 related to assistive environments. 156–163.

1250 [37] Zoe Kosmadoudi, Theodore Lim, James Ritchie, Sandy Louchart, Ying Liu, and Raymond Sung. 2013. Engineering design using game-enhanced
1251 CAD: The potential to augment the user experience with game elements. *Computer-Aided Design* 45, 3 (2013), 777–795.

1252 [38] Fedwa Laamarti, Mohamad Eid, and Abdulmotaleb El Saddik. 2014. An overview of serious games. *International Journal of Computer Games
1253 Technology* 2014 (2014), 1–15. <https://doi.org/10.1155/2014/358152>

1254 [39] Tae-Su Lee. 2021. Development and applied effects of VR-based cooking serious game for students with intellectual disabilities. *Journal of Korea
1255 Game Society* 21, 1 (2021), 67–80.

1256 [40] Chenming Lin, Guobin Xia, Farnaz Nickpour, and Yinshan Chen. 2025. A review of emotional design in extended reality for the preservation of
1257 culture heritage. *npj Heritage Science* 13, 1 (March 2025), 86. <https://doi.org/10.1038/s40494-025-01625-x>

1258 [41] Shixia Liu, Weiwei Cui, Yingcai Wu, and Mengchen Liu. 2014. A survey on information visualization: recent advances and challenges. *The Visual
1259 Computer* 30 (2014), 1373–1393.

1260 [42] Wenjun Liu, Charlie Hargood, Wen Tang, and Vedad Hulusic. 2025. Evaluating the Impact of User and Learning Experience in Three Cultural
1261 Heritage VR Applications. In *Proceedings of the 20th International Conference on the Foundations of Digital Games*. ACM, Vienna & Graz Austria,
1262 1–18. <https://doi.org/10.1145/3723498.3723810>

1263 [43] Zhicong Lu, Peng Tan, Yi Ji, and Xiaojuan Ma. 2022. The crafts+ fabrication workshop: Engaging students with intangible cultural heritage-oriented
1264 creative design. In *Proceedings of the 2022 ACM Designing Interactive Systems Conference*. 1071–1084.

1265 [44] Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes, Amaia Salvador, Yusuf Aytar, Ingmar Weber, and Antonio Torralba. 2021. Recipe1M+: A
1266 Dataset for Learning Cross-Modal Embeddings for Cooking Recipes and Food Images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*
43, 1 (Jan. 2021), 187–203. <https://doi.org/10.1109/TPAMI.2019.2927476>

1267 [45] Richard E. Mayer. 2022. *Multimedia learning*. Cambridge University Press.

1268 [46] Alex Mazursky, Jas Brooks, Beza Desta, and Pedro Lopes. 2024. ThermalGrasp: Enabling Thermal Feedback even while Grasping and Walking. In
1269 *2024 IEEE Conference Virtual Reality and 3D User Interfaces (VR)*. IEEE, Orlando, FL, USA, 342–353. <https://doi.org/10.1109/VR58804.2024.00056>

1270 [47] E. McAuley, T. Duncan, and V. V. Tammen. 1989. Psychometric properties of the Intrinsic Motivation Inventory in a competitive sport setting: a
1271 confirmatory factor analysis. *Research Quarterly for Exercise and Sport* 60, 1 (March 1989), 48–58. <https://doi.org/10.1080/02701367.1989.10607413>

1272 [48] Janet Metcalfe. 2017. Learning from errors. *Annual Review of Psychology* 68, 1 (Jan 2017), 465–489. <https://doi.org/10.1146/annurev-psych-010416-044022>

1273 [49] Shahrul Amri Mohamad, Rozniza Zaharudin, Anderson Ngelambong, and Yusri Kamin. 2024. COOKING UP SUCCESS: INTEGRATING AUGMENTED
1274 REALITY IN TEACHER TRAINING FOR FOOD PREPARATION AND PRODUCTION SUBJECTS. *International Journal of Modern Education* 6, 23
1275 (Dec. 2024), 532–543. <https://doi.org/10.35631/IJMOE.623036>

1276 [50] Takamichi Nakamoto, Shigeki Otaguro, Masashi Kinoshita, Masahiko Nagahama, Keita Ohinishi, and Taro Ishida. 2008. Cooking up an interactive
1277 olfactory game display. *IEEE Computer Graphics and Applications* 28, 1 (2008), 75–78.

1278 [51] Nithikul Nimkulrat. 2012. Hands-on intellect: Integrating craft practice into design research. *International Journal of Design* 6, 3 (2012), 1–14.

1279 [52] Owlchemy Labs. 2022. Lost Recipes. <https://schellgames.com/portfolio/lost-recipes>. Accessed: 2025-09-08.

1280 [53] Françoise Paquienseguy and Qian Guo. 2025. Douyin and the Digital Spread of Intangible Cultural Heritage: Transforming Cultural Dissemination
1281 in the Short Videos Age. *Emerging Media* 3, 2 (June 2025), 343–366. <https://doi.org/10.1177/27523543251344976>

1282 [54] Susan Persky and Alexander P. Dolwick. 2020. Olfactory Perception and Presence in a Virtual Reality Food Environment. *Frontiers in Virtual Reality*
1283 1 (Sept. 2020), 571812. <https://doi.org/10.3389/fvir.2020.571812>

1284 [55] Carl Plantinga. 2005. What a documentary is, after all. *The Journal of aesthetics and art criticism* 63, 2 (2005), 105–117.

1285 [56] Anna Podara, Dimitrios Giomelakis, Constantinos Nicolaou, Maria Matsioli, and Rigas Kotsakis. 2021. Digital Storytelling in Cultural Heritage:
1286 Audience Engagement in the Interactive Documentary New Life. *Sustainability* 13, 3 (Jan. 2021), 1193. <https://doi.org/10.3390/su13031193>

1287 [57] Ting Qiu, Hong Li, Yongkang Chen, Hui Zeng, and Shufang Qian. 2024. Continuance intention toward VR games of intangible cultural heritage: A
1288 stimulus-organism-response perspective. *Virtual Reality* 28, 3 (Aug. 2024), 149. <https://doi.org/10.1007/s10055-024-01043-7>

1289 [58] Abhishek Rajan. 2023. Gastronomic evolution: A review of traditional and contemporary Food Culture. *International Journal for Multidimensional
1290 Research Perspectives* 1, 2 (2023), 62–76.

1291 [59] Makhabbat Ramazanova, Cristina Lopes, Helena Albuquerque, Isabel Vaz De Freitas, Joana Quintela, and Patrícia Remelgado. 2022. Preserving
1292 ritual food as intangible cultural heritage through digitisation. The case of Portugal. *International Conference on Tourism Research* 15, 1 (May 2022),
1293 334–343. <https://doi.org/10.34190/ictr.15.1.243>

1294 [60] Y. Rosilawati, Z. Rafique, S. Habib, and A. Nurmandi. 2020. Cultural Psychology, Social Identity, and Community Engagement in World Heritage
1295 Conservation Sites. *Utopía y Praxis Latinoamericana* 25, Esp.7 (2020), 81–93. <https://doi.org/10.5281/zenodo.400960>

1296 [61] Dina Sabie, Hala Sheta, Hasan Shahid Ferdous, Vannie Kopakal Krishnan, and Syed Ishtiaque Ahmed. 2023. Be our guest: intercultural heritage
1297 exchange through augmented reality (AR). In *Proceedings of the 2023 CHI conference on human factors in computing systems*. 1–15.

1298 [62] Javad Sameri, Sam Van Damme, Susanna Schwarzmann, Qing Wei, Riccardo Trivisonno, Filip De Turck, and Maria Torres Vega. 2024. Collaborative
1299 Cooking in VR: Effects of Network Distortion in Multi-User Virtual Environments. In *Proceedings of the 15th ACM Multimedia Systems Conference*.
1300 509–515.

1300 [63] Owen Schaffer and Xiaowen Fang. 2019. Digital game enjoyment: A literature review. In *HCI in Games: First International Conference, HCI-Games
2019, Held as Part of the 21st HCI International Conference, HCII 2019, Orlando, FL, USA, July 26–31, 2019, Proceedings* 21. Springer, 191–214.

1301 [64] Martin Schwichow, Corinne Zimmerman, Steve Croker, and Hendrik Härtig. 2016. What students learn from hands-on activities. *Journal of research*
 1302 *in science teaching* 53, 7 (2016), 980–1002.

1303 [65] Elmedin Selmanović, Selma Rizvic, Carlo Harvey, Dusanka Boskovic, Vedad Hulusic, Malek Chahin, and Sanda Sljivo. 2020. Improving Accessibility
 1304 to Intangible Cultural Heritage Preservation Using Virtual Reality. *Journal on Computing and Cultural Heritage* 13, 2 (June 2020), 1–19. <https://doi.org/10.1145/3377143>

1305 [66] Lawrence Shapiro. 2019. *Embodied cognition*. Routledge.

1306 [67] Frances Short. 2006. *Kitchen secrets: The meaning of cooking in everyday life*. Berg.

1307 [68] Changqing Sun, Hong Chen, and Ruihua Liao. 2021. Research on incentive mechanism and strategy choice for passing on intangible cultural
 1308 heritage from masters to apprentices. *Sustainability* 13, 9 (2021), 5245.

1309 [69] Dongyan Sun and Chengping Wang. 2023. Application of AR Technology in Intangible Cultural Heritage and Cultural Tourism. In *The 3rd International*
 1310 *Conference on Electronic Information Technology and Smart Agriculture*. ACM, Sanya China, 247–252. <https://doi.org/10.1145/3641343.3641387>

1311 [70] Yuzhu Sun. 2024. Communication and inheritance: the narrative logic of integration in the documentary “The New Biography of Intangible Cultural
 1312 Heritage” from the perspective of communication. *International Communication of Chinese Culture* 11, 2 (2024), 281–294.

1313 [71] David Sutton. 2018. Cooking skills, the senses, and memory: The fate of practical knowledge. In *Food and culture*. Routledge, 88–109.

1314 [72] Yuyao Tan, Hao Wang, Zibo Zhao, and Tao Fan. 2024. A Joint Entity-Relation Detection and Generalization Method Based on Syntax and Semantics
 1315 for Chinese Intangible Cultural Heritage Texts. *Journal on Computing and Cultural Heritage* 17, 1 (Feb. 2024), 1–20. <https://doi.org/10.1145/3631124>

1316 [73] Christian Timmerer, Markus Waltl, Benjamin Rainer, and Niall Murray. 2014. Sensory experience: Quality of experience beyond audio-visual.
 1317 *Quality of Experience: Advanced Concepts, Applications and Methods* (2014), 351–365.

1318 [74] UNESCO. 2019. GUIDANCE NOTE FOR INVENTORYING INTANGIBLE CULTURAL HERITAGE.pdf.

1319 [75] Mediterranean Diet UNESCO. 2019. UNESCO Intangible Cultural Heritage.

1320 [76] Huanchen Wang, Minzhu Zhao, Wanyang Hu, Yuxin Ma, and Zhicong Lu. 2024. Critical heritage studies as a lens to understand short video sharing
 1321 of intangible cultural heritage on douyin. In *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems*. 1–21.

1322 [77] Huanchen Wang, Minzhu Zhao, Wanyang Hu, Yuxin Ma, and Zhicong Lu. 2024. Critical Heritage Studies as a Lens to Understand Short Video
 1323 Sharing of Intangible Cultural Heritage on Douyin. In *Proceedings of the CHI Conference on Human Factors in Computing Systems*. ACM, Honolulu
 1324 HI USA, 1–21. <https://doi.org/10.1145/3613904.3642138>

1325 [78] Andrew D Wilson and Sabrina Golonka. 2013. Embodied cognition is not what you think it is. *Frontiers in psychology* 4 (2013), 58.

1326 [79] Eleonora Zedda, Marco Manca, Fabio Paternò, et al. 2021. A Cooking Game for Cognitive Training of Older Adults Interacting with a Humanoid
 1327 Robot.. In *CHIRA*. 271–282.

1328 [80] Zhongwu Zhang, Zheng Cui, Tongsheng Fan, Shiyun Ruan, and Juemei Wu. 2024. Spatial distribution of intangible cultural heritage resources in
 1329 China and its influencing factors. *Scientific Reports* 14, 1 (2024), 4960.

1330 [81] Ramadanova Zhanna. 2020. Digitization of Intangible Cultural Heritage as a method to save and actualize it on the example of Kazakh folk dance. In
 1331 *Proceedings of the 6th International Conference on Engineering & MIS 2020*. ACM, Almaty Kazakhstan, 1–7. <https://doi.org/10.1145/3410352.3410748>

1332 [82] Jing Zhao, Zhong Wang, Chenyu Wang, Liming Han, Yaohui Ruan, Zhounan Huangfu, Shuai Zhou, and Lei Zhou. 2022. Research on the status of
 1333 intangible cultural heritage bearers in the human capital perspective. *Frontiers in psychology* 13 (2022), 850780.

1334 [83] Shanshan Zheng. 2023. Safeguarding food heritage through social media? Between heritagization and commercialization. *International journal of*
 1335 *gastronomy and food science* 31 (2023), 100678.

1336 [84] Jie Zhou, Ji Qi, and Xuefeng Shi. 2022. The Innovation of Entrepreneurship Education for Intangible Cultural Heritage Inheritance From the
 1337 Perspective of Entrepreneurial Psychology. *Frontiers in Psychology* 13 (2022), 721219.

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

Table 1. Participant demographics by condition. Values are $M (SD)$ or counts.

Group	n	Age $M (SD)$	Female	Male	Bachelor's	Master's	High school	0 h	0–3 h/wk	3–7 h/wk	≥ 7 h/wk	Cooking freq M	Prior VR M	Motion sickness M
Interactive VR game	18	26.2 (3.4)	13	5	8	10	0	4	9	2	3	3.4	2.2	2.4
VR video (control)	20	22.7 (1.9)	12	8	13	6	1	3	8	4	5	3.4	2.6	2.6

A Appendix

A.1 Participants Demographics

A.1.1 Demographic Summarization.

A.1.2 Detailed Demographic Table.

Table 2. Participant roster with self-reported demographics by condition.

Condition	ID	Age	Gender	Education	Cultural background	Weekly gaming	Cooking frequency	Prior VR use [†]	Motion sickness M
VR game	1	25	Male	Master's	Wuxi, Jiangsu	≥ 7 h/wk	3×/week	2	
VR game	2	25	Male	Master's	Wuxi	0–3 h/wk	4×/week	1	
VR game	3	28	Female	Master's	Zhengzhou, Henan	0 h	3×/week	3	
VR game	4	30	Female	Master's	Suzhou	0 h	6×/week	2	
VR game	5	27	Male	Bachelor's	Anhui	≥ 7 h/wk	1×/week	3	
VR game	6	28	Female	Bachelor's	Wuxi native	0 h	1×/week	1	
VR game	7	22	Male	Bachelor's	Anhui	≥ 7 h/wk	5×/week	1	
VR game	8	37	Female	Bachelor's	Shanxi	0–3 h/wk	2×/week	1	
VR game	9	27	Female	Bachelor's	Xi'an, Shaanxi	0–3 h/wk	2×/week	1	
VR game	10	24	Female	Bachelor's	Guangdong	0 h	3×/week	2	
VR game	11	22	Female	Master's	Huangshan, Anhui	≥ 7 h/wk	2×/week	4	
VR game	12	24	Female	Master's	Fuzhou, Fujian	3–7 h/wk	3×/week	4	
VR game	13	23	Female	Master's	Hakka and Henan	3–7 h/wk	1×/week	3	
VR game	14	27	Female	Bachelor's	Tianjin	0–3 h/wk	2×/week	4	
VR game	15	24	Male	Master's	Henan and Shandong	0–3 h/wk	3×/week	2	
VR game	16	28	Female	Master's	Shenzhen, Guangdong	0–3 h/wk	6×/week	2	
VR game	17	24	Female	Master's	Sichuan	0–3 h/wk	6×/week	6	
VR game	18	23	Female	Master's	Guangzhou	3–7 h/wk	1×/week	3	
VR video	7	25	Female	Bachelor's	Dalian, Liaoning	0–3 h/wk	4×/week	2	
VR video	2	22	Female	Bachelor's	Beijing	3–7 h/wk	2×/week	1	
VR video	4	22	Female	Bachelor's	Suzhou, Jiangsu	0–3 h/wk	4×/week	2	
VR video	6	23	Male	Bachelor's	Nanjing, Jiangsu	3–7 h/wk	3×/week	1	
VR video	8	22	Female	Bachelor's	Wuxi, Jiangsu	0–3 h/wk	3×/week	3	
VR video	9	21	Male	Bachelor's	Beijing	0–3 h/wk	0×/week	1	
VR video	10	23	Male	Bachelor's	Wuhan, Hubei	0–3 h/wk	2×/week	2	
VR video	11	21	Male	Bachelor's	Beijing	0–3 h/wk	5×/week	4	
VR video	12	23	Female	Master's	Henan	3–7 h/wk	6×/week	3	

Condition	ID	Age	Gender	Education	Cultural background (translated)	Weekly gaming	Cooking frequency	Prior VR use
VR video	13	21	Female	Bachelor's	Beijing	3–7 h/wk	3×/week	3
VR video	14	22	Male	Master's	Beijing native	≥7 h/wk	4×/week	3
VR video	15	22	Female	Bachelor's	Shandong (Lu cuisine)	≥7 h/wk	3×/week	6
VR video	16	23	Female	Master's	Qingdao, Shandong	0–3 h/wk	3×/week	2
VR video	17	23	Male	Bachelor's	Beijing	≥7 h/wk	4×/week	2
VR video	18	21	Female	Bachelor's	Beijing	0–3 h/wk	3×/week	2
VR video	19	21	Male	Bachelor's	Beijing	≥7 h/wk	3×/week	3
VR video	20	24	Female	Master's	Tianshui, Gansu	3–7 h/wk	2×/week	1
VR video	21	23	Female	Master's	Beijing	0 h	3×/week	1
VR video	22	21	Male	Bachelor's	Hunan	0 h	2×/week	4
VR video	23	23	Female	Bachelor's	Wuxi, Jiangsu	0–3 h/wk	3×/week	6
VR video	24	22	Male	High school	Zhejiang	≥7 h/wk	4×/week	3
VR video	25	23	Female	Bachelor's	Beijing	0 h	3×/week	2
VR video	26	24	Female	Master's	Beijing	≥7 h/wk	4×/week	6
VR video	27	22	Male	Bachelor's	Zhejiang	3–7 h/wk	5×/week	6

1426

1427 [†]Higher values indicate more frequent prior VR use (self-report). [‡]Higher values indicate greater motion-sickness susceptibility (self-report).

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456