

1 Spatial Balancing: Harnessing Spatial Reasoning to Balance Scientific Exposition 2 and Narrative Engagement in LLM-assisted Science Communication Writing

3
4 ANONYMOUS AUTHOR(S)
5

27 Fig. 1. Example Workflow of using SpatialBalancing for iterative science communication writing. A – Jenny drags her draft into the
28 canvas, where each paragraph becomes a node mapped by Scientific Exposition (Y-axis) and Narrative Engagement (X-axis). B – She
29 selects revision labels such as Enhance Understanding or Captivate & Immerse, each tied to LLM-driven strategies that generate
30 new versions placed accordingly. C – Jenny reviews and confirms preferred revisions, which turn purple for further refinement. D –
31 She can combine two versions into a synthesized draft, balancing credibility and engagement. E – Further revisions are guided by
32 strategies or custom prompts, enabling precise, iterative control. F – Finally, SpatialBalancing’s Muse assistant reflects on her revision
33 history and offers adaptive suggestions.

34 Balancing scientific exposition and narrative engagement is a central challenge in science communication. To examine how to achieve
35 balance, we conducted a formative study with four science communicators and a literature review of science communication practices,
36 focusing on their workflows and strategies. These insights revealed how creators iteratively shift between exposition and engagement
37 but often lack structured support. Building on this, we developed SpatialBalancing, a co-writing system that connects human spatial
38 reasoning with the linguistic intelligence of large language models. The system visualizes revision trade-offs in a dual-axis space, where
39 users select strategy-based labels to generate, compare, and refine versions during the revision process. This spatial externalization
40 transforms revision into spatial navigation, enabling intentional iterations that balance scientific rigor with narrative appeal. In a
41 within-subjects study (N=16), SpatialBalancing enhanced metacognitive reflection, flexibility, and creative exploration, demonstrating
42 how coupling spatial reasoning with linguistic generation fosters monitoring in iterative science communication writing.

43
44
45
46
47
48
49
50
51
52

53 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
54 made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party
55 components of this work must be honored. For all other uses, contact the owner/author(s).

56 © 2026 Copyright held by the owner/author(s).

57 Manuscript submitted to ACM

58 Manuscript submitted to ACM

53 CCS Concepts: • Human-centered computing → Collaborative interaction.

54
55 Additional Key Words and Phrases: Narrative Strategy, Science Communication, Spatial Reasoning, Writing Assistance

56
57 **ACM Reference Format:**

58 Anonymous Author(s). 2026. Spatial Balancing: Harnessing Spatial Reasoning to Balance Scientific Exposition and Narrative Engagement
59 in LLM-assisted Science Communication Writing. In *CHI Conference on Human Factors in Computing Systems (CHI '26), April
60 13–17, 2026, Barcelona, Spain*. ACM, New York, NY, USA, 36 pages. <https://doi.org/10.1145/3474349.3480203>

62 1 Introduction

63 With the recent progress in modeling human language, generative systems have increasingly been applied to diverse
64 writing tasks, ranging from news reporting to creative storytelling [54]. Compared with other forms of writing, science
65 communication is distinctive in that it requires a careful balance between scientific exposition and narrative engagement,
66 a balance that directly influences how the public understands and trusts scientific knowledge [7, 16, 29, 78].

67 Online platforms have democratized science content creation across YouTube, social media, blogs, Q&A sites,
68 and podcasts [67, 92, 99], making the balance between scientific exposition and narrative engagement increasingly
69 complex. While improving accessibility, this trend creates a significant challenge: untrained creators produce highly
70 variable content quality [76], highlighting the need for better guidance frameworks to support high-quality science
71 communication. To address this challenge, recent HCI research has leveraged the linguistic intelligent of large language
72 models (LLMs) to support science communication writing, capitalizing on their ability to synthesize complex information,
73 switch flexibly between tones, and produce stylistic alternatives [11]. These systems focus on content planning [72, 80],
74 rhetorical enhancement [34, 35, 49], and iterative revision [58, 98]. However, existing tools predominantly adopt a
75 prompt–response paradigm, offering surface-level language variation while focusing on either structural planning [80]
76 or localized iterations [36, 49]. They lack integration between local edits and broader narrative design, and provide
77 no structured representations showing how revisions influence the trade-off between exposition and engagement,
78 constraining users’ capacity to intentionally guide this process [98].

79 These limitations point to a broader question: as generative systems increasingly approximate or surpass human
80 linguistic capabilities, effective human–AI collaboration may need to draw on distinctively human cognitive capacities,
81 such as spatial reasoning. Spatial reasoning, defined as the ability to comprehend, manipulate, infer, and anticipate
82 spatial relationships and structures [56], enables holistic navigation of complex configurations. HCI research has
83 leveraged spatial representations for human–AI collaboration through node-link diagrams [49, 61, 100] and selection
84 paradigms [58, 59] to enhance interpretability and controllability. However, these approaches remain limited to structural
85 visualization and option manipulation, lacking mechanisms for dynamically sustaining the balance between scientific
86 exposition and narrative engagement—an inherently ongoing, multidimensional trade-off [25, 38, 62]. This balancing
87 process resembles spatial navigation, where writers must continually evaluate their position relative to communicative
88 goals and make directional adjustments [95, 98], underscoring the need for spatial-reasoning-based interfaces that
89 better support communicators in navigating this balance.

90 Building on this foundational spatial reasoning capacity of human and LLM’s linguistic intelligence, we propose
91 **Spatial Balancing**: an interaction paradigm that leverages human spatial reasoning to guide the dynamic negotiation
92 between scientific exposition and narrative engagement in science communication. Communicators use spatial reasoning
93 to steer and regulate the dynamic negotiation between scientific exposition and narrative engagement, while LLMs
94 provide the linguistic material that fills this rhetorical space [14]. We instantiate this concept in SpatialBalancing, a
95 Manuscript submitted to ACM

105 proof-of-concept system (Figure 1) that visualizes communicative iterations with LLM in a two-dimensional coordinate
106 space, where the x-axis represents narrative engagement and the y-axis represents scientific exposition. Each iteration
107 is plotted as a point, thereby providing communicators with continuous visual feedback to assess how revisions shift
108 across the two dimensions. Such spatial externalization reframes revision as a process of navigating a rhetorical space,
109 shifting the activity from reactive modification toward more intentional exploration. This idea further aligns with
110 recent work on LLM-assisted ideation that employs spatial representations to scaffold scientific ideation [23].
111

112 To systematically investigate this approach, we pose three research questions:
113

- 114 • **RQ1 - System Design:** How can spatial reasoning be applied to support writers in balancing scientific exposition
115 and narrative engagement in science communication?
- 116 • **RQ2 - Cognition:** What impact does spatial visualization of revision tradeoffs have on writers' cognitive
117 process?
- 118 • **RQ3 - System Feature:** How do different interface features (2D coordination, strategy labels, reflective feedback)
119 contribute to improving writing quality and user experience in science communication?

122 In a within-subjects study with 16 science communicators, SpatialBalancing demonstrated measurable advantages
123 over a strong LLM baseline. It supported greater strategic flexibility, creative exploration, and metacognitive reflection.
124 Participants reported that the coordinate visualization externalized abstract goals, facilitated real-time self-monitoring,
125 and enhanced their confidence in editorial decisions. By making the trade-offs between scientific exposition and
126 narrative engagement more tangible, the system enabled more deliberate decision-making and iterative exploration.
127

128 Our contributions include:
129

- 130 • The concept of Spatial Balancing as a novel interaction paradigm for science communication writing, along
131 with design implications that translate spatial reasoning into actionable writing support with LLM.
- 132 • A proof-of-concept system that instantiates this framework through spatial reasoning, enabling visual explo-
133 ration of revision trade-offs.
- 134 • Empirical evidence from a within-subjects study with 16 science communicators showing that our proof-of-
135 concept system improves metacognitive regulation, creative exploration, and writer confidence relative to a
136 state-of-the-art LLM baseline.

139 **2 Related Work**

141 **2.1 Balancing Exposition and Narrative Engagement in Science Communication Writing**

142 In the Information Age, online science communication has become increasingly dominant, especially in the popular
143 science field [9, 63]. Science communication refers to the strategic use of various forms of communication, such as media,
144 events, and interactions, to convey scientific information to diverse audiences in a way that aims to increase awareness,
145 enjoyment, interest, opinion-forming, and understanding [7, 46, 66]. The popular science movement (also known as pop
146 science or popsci) aims to interpret and present scientific concepts in an accessible way for a general audience, placing
147 greater emphasis on entertainment and broadening its scope compared to traditional science journalism [5, 19, 93]. As
148 online communication technologies have become more accessible, various formats have emerged to deliver popular
149 science content, including books, documentaries, web articles, and online videos [29, 93, 99].
150

152 A fundamental challenge in science communication writing lies in balancing two often competing dimensions:
153 scientific exposition and narrative engagement [25, 38, 62]. Burns et al. [7] made a vivid analogy, describing science
154 communication writing as a form of "mountain climbing," balancing between scientific literacy and science culture.
155

157 Similarly, Dahlstrom [16] emphasized that science communication writing inherently involves both narrative and
 158 expository elements. In this study, we use the terms "scientific exposition" and "narrative engagement" to describe this
 159 tradeoff [24], because these terms more directly capture the practical tension between maintaining rigorous, detailed
 160 scientific presentation and creating compelling, accessible content for diverse audiences [24, 62]. The tension between
 161 these dimensions stems from their fundamentally different linguistic requirements. Engaging content relies on narrative
 162 techniques—storytelling, analogy, and suspense—to capture attention [16, 29, 38], while scientifically accurate content
 163 demands rigorous expository writing that prioritizes scientific detail and credibility [48, 51].
 164

165 To address this inherent tension, writers typically navigate between these two dimensions using iterative linguistic
 166 strategies [29, 33, 64, 69], transforming revision into a non-linear, multi-pass process. Existing scholarship has developed
 167 strategies that focus on either narrative engagement or scientific precision [3, 52]. For enhancing narrative engagement,
 168 research has identified three primary approaches. First, writers create memorable points by distilling complex ideas
 169 into condensed, succinct expressions [29, 64]. Second, they evoke emotions by strategically incorporating elements of
 170 hope, fear, or sadness [32, 33, 42, 91]. Third, they spark curiosity through thought-provoking questions that encourage
 171 reader reflection [77, 99]. In contrast, strategies for maintaining scientific precision emphasize rigorous expository
 172 writing that prioritizes comprehensive detail and establishes credibility [48, 51, 69]. Through iteratively revising and
 173 evaluating drafts, writers achieve overall balance by strategically emphasizing engagement in some sections while
 174 prioritizing scientific exposition in others to ensure clear explanation throughout the piece [3, 43].
 175

176 Most critically, science communication authors revise without timely, reader-centered feedback on how their
 177 text balances exposition and engagement [95, 98, 99]. This evaluation gap obscures whether a change represents an
 178 improvement or regression, pushing writers toward conservative edits and stifling exploration [3, 65]. Without reliable,
 179 localized signals, they must navigate implicit trade-offs that remain difficult to surface and track, creating subsequent
 180 challenges in judging whether revisions enhance the balance and generating reluctance to pursue alternatives due to
 181 fear of losing progress [98].
 182

183 Existing approaches exacerbate the problem. Theory-heavy guidance provides minimal procedural support for
 184 iterative revision that balances scientific exposition with narrative engagement [25, 38, 62]. Consequently, there is a
 185 critical need for integrated, revision-oriented support that makes both dimensions visible across multiple scales, delivers
 186 real-time audience-informed feedback, and enables multi-version exploration through non-linear history with granular
 187 controls.
 188

189 **2.2 Spatial Reasoning for Steering Linguistic Intelligence of Language Models**

190 Human cognition embodies two complementary strengths: linguistic intelligence, the capacity to generate, interpret, and
 191 manipulate complex symbolic expressions, and spatial reasoning, which supports envisioning relationships, operating
 192 on conceptual structures, and weighing trade-offs across multiple goals in multi-dimensional space. With recent
 193 advances, large language models (LLMs) have demonstrated remarkable linguistic intelligence—synthesizing complex
 194 information, flexibly shifting between tones, and producing stylistic alternatives that rival or even surpass human
 195 fluency [11, 36, 37, 49, 80]. While large language models (LLMs) have increasingly matched or even surpassed human
 196 capabilities in linguistic fluency, humans still hold a clear advantage in spatial reasoning over both language and
 197 multimodal models. Human spatial reasoning encompasses the ability to mentally manipulate objects, navigate complex
 198 environments, and critically—visualize abstract relationships [50, 88]. These capabilities, particularly the capacity to use
 199 spatial metaphors for non-spatial concepts and optimize within multi-constraint spaces, remain challenging for current
 200 AI systems despite their linguistic sophistication [22, 23]. This asymmetry motivates the design of mixed-initiative
 201

systems that combine human spatial reasoning with the linguistic intelligence of LLMs [21] to support complex cognitive tasks that require both sophisticated language generation and multi-dimensional reasoning, such as scientific writing that balances accuracy with accessibility across diverse audiences.

One notable form of spatial reasoning is direct manipulation of LLM output [81]: continuous feedback, rapid, reversible adjustments make complex intents expressible beyond text prompts alone. Systems such as ForceSPIRE [28] and Drag-and-Track [68] harness spatial operations to steer semantic analysis and data processing, bridging tacit goals and algorithmic execution. In LLM contexts, node-link diagrams [22] support GenAI-assisted hypothesis exploration, while real-time pipeline steering systems such as WaitGPT [96] enable fine-grained control over LLM workflows through spatial interactions. While direct manipulation interfaces are effective for illustrating step-by-step LLM processes, such sequential layouts quickly become cluttered as task complexity increases, limiting their ability to capture higher-level rhetorical trade-offs. To address this, researchers have turned to graph and tree-based views—such as Sensecape [84], Luminate [83], and Graphologue [45], which reveal relationships among generative elements via node–edge structures and support hierarchical exploration with LLM text output. Yet these systems largely prioritize inspection over in-situ steering of trade-offs.

As generative systems have demonstrated stronger linguistic capabilities, researchers have begun developing mixed-initiative visualization systems that combine human spatial reasoning with the linguistic intelligence of LLMs for collaborative text creation. For instance, sketch-driven storytelling interfaces allow users to spatially outline narrative trajectories, which are then expanded by language models into full-fledged text, thereby translating between spatial reasoning and linguistic generation [13]. Likewise, PatchView's "dust-and-magnet" metaphor enables users to rapidly cluster and combine narrative fragments through spatial manipulation [14], while Toyteller [15] transforms story fragments into interactive "toys" that encourage expressive ideation.

While these spatial approaches to human-AI collaboration have shown promise in creative domains and general text manipulation, their application to the specialized demands of science communication writing remains largely unexplored. Unlike creative domains, where LLM outputs are not bound by strict requirements and primarily seek new insights, science communication writing imposes stricter constraints, such as maintaining a linguistic balance between scientific exposition and narrative engagement [7, 16, 29, 78]. This gap represents a significant opportunity, as science communication writing inherently lends itself to spatial reasoning—writers naturally conceptualize their work through spatial metaphors such as "moving toward" accessibility, finding the "sweet spot" between detail and clarity [17], or "navigating" competing audience needs [98]. This research gap motivates us to design a 2D visualization interface that combines human spatial reasoning capabilities with LLM linguistic intelligence to support the iterative revision process of balancing scientific exposition and narrative engagement.

3 System Design

Based on our literature review, narrative engagement and scientific exposition are two critical dimensions that require careful consideration and when creating science communication narratives [25, 38, 62]. Writers must navigate an iterative, non-linear revision process as they continuously shuttle between these competing demands, often finding that improvements in one dimension can inadvertently compromise the other [29, 33, 69]. This creates a persistent struggle where writers lack systematic guidance for simultaneously optimizing both dimensions during their multi-pass revision workflow, leading to inefficient trial-and-error approaches that may favor one dimension at the expense of scientific exposition or reader engagement [64]. To understand how these two aspects are considered and how a balance

261 is achieved in authentic creative processes, we conducted further expert interviews (Section 3.1) and a literature review
262 (Section 3.3) to establish a more instructive guideline.
263

264 3.1 Formative Study 265

266 To better understand the workflows, goals, and tool needs of science communicators, we conducted in-depth interviews
267 with four professionals: a TikTok science animator (20K+ followers), a YouTuber (10K+ subscribers), a science columnist
268 on a Q&A platform (200K+ followers), and an educational video producer. Each interview lasted approximately 90
269 minutes and focused on three areas: (1) their typical content creation workflow, (2) how they balance communicative
270 goals, and (3) how they use LLM tools in practice. The qualitative findings are as follows:
271

272 **(1) The Core Challenge: Balancing Scientific Exposition and Narrative Engagement.** Participants described
273 two common workflows in science communication. The knowledge-to-stories approach, favored by those creating
274 platform-independent or long-form content, begins with scientific concepts and adds narrative elements (e.g., examples,
275 metaphors, stories) to enhance engagement. In contrast, the news-to-theories workflow—more typical of real-time or
276 event-driven content—starts with current events or relatable experiences and layers in relevant scientific explanations.
277 Despite differing starting points, all participants emphasized the same challenge: sustaining both scientific rigor and
278 audience interest. One author noted, “If it’s too technical, people stop watching. If it’s too entertaining, they call it
279 shallow.” Across formats, authors stressed the need to balance clarity, credibility, and emotional connection.
280

281 **(2) Narrative Strategies Are Essential but Lack Structured Support.** To make their writing more engaging,
282 participants reported deliberately applying narrative strategies, such as metaphors, real-world analogies, quotations,
283 and personal anecdotes, to enhance the appeal of their content. One author revised content by adding narrative “hooks”
284 after drafting the science explanation; another explicitly mapped theories to familiar experiences. The science columnist
285 also said she relied on LLMs to quickly associate trending news with relevant theories. However, these four experts
286 also noted that these decisions were largely intuitive due to their extensive editing and revision of texts and lacked
287 structured support. They mentioned that it would be better to have a holistic narrative framework to guide the revision
288 process. Additionally, they expressed a desire for clearer feedback on how well their narrative choices aligned with real
289 audience feedback.
290

291 **(3) LLMs Enable Exploration but Require Human Filtering for Precision.** All four participants had exper-
292 imented with LLMs to support writing, primarily for idea generation, tone adjustment, and connecting scientific ideas
293 to familiar concepts. For example, the educator used LLMs to make explanations “more relaxed and child-friendly,”
294 while the columnist relied on them to quickly associate trending news with relevant theories. The YouTuber, who
295 typically starts with expository theories, used LLMs to generate more examples and metaphors and edit based on the
296 output to aid audience understanding. All four of them mentioned that co-creating with LLMs enabled them to revise
297 content more quickly. They also noted that LLMs provided more examples and diverse perspectives to enhance the
298 content’s engagement and understanding, or to strengthen its scientific rigor and support. For example, the science
299 columnist noted that she typically asks the LLM to surface a wide range of relevant theories, then filters through these
300 options herself, and once one is selected, she carries out more fine-grained refinements. This illustrates how LLMs
301 contribute linguistic intelligence by supporting both flexible exploration by surfacing diverse theoretical possibilities
302 and fine-grained modification of specific content once a direction is chosen.
303

304 **(4) Iterative Revision Relies on Intuition Due to Lack of Timely Feedback.** Participants consistently emphasized
305 that science communication writing is a highly iterative and non-linear process. They often went through multiple
306 rounds of revision: starting with a draft focused on scientific explanation, then adding narrative elements, and finally
307

313 refining language and visual expression. Each round could strengthen one dimension while weakening another. For
314 instance, a YouTuber noted that after polishing the scientific argument, the storytelling often felt less engaging, requiring
315 the addition of analogies or examples; yet when more narrative elements were included, there was concern that the
316 content might lose academic rigor. These revisions were guided largely by intuition rather than systematic criteria.
317 Audience feedback (e.g., views, likes, comments) was delayed, indirect, and rarely pinpointed which changes improved
318 clarity or engagement. As the TikTok science animator noted, “You only know if it worked after publishing—and by
319 then, it’s too late.” This lack of timely, fine-grained feedback left creators relying on trial-and-error, making it difficult
320 to efficiently balance narrative appeal with scientific rigor.
321

322 In sum, science communicators need assistance to help them balance rigor and engagement, apply narrative strategies
323 systematically, harness LLMs for exploration and refinement, and receive timely feedback. Addressing these needs
324 would enable more efficient, intentional revision processes.
325

326 3.2 Design Goals

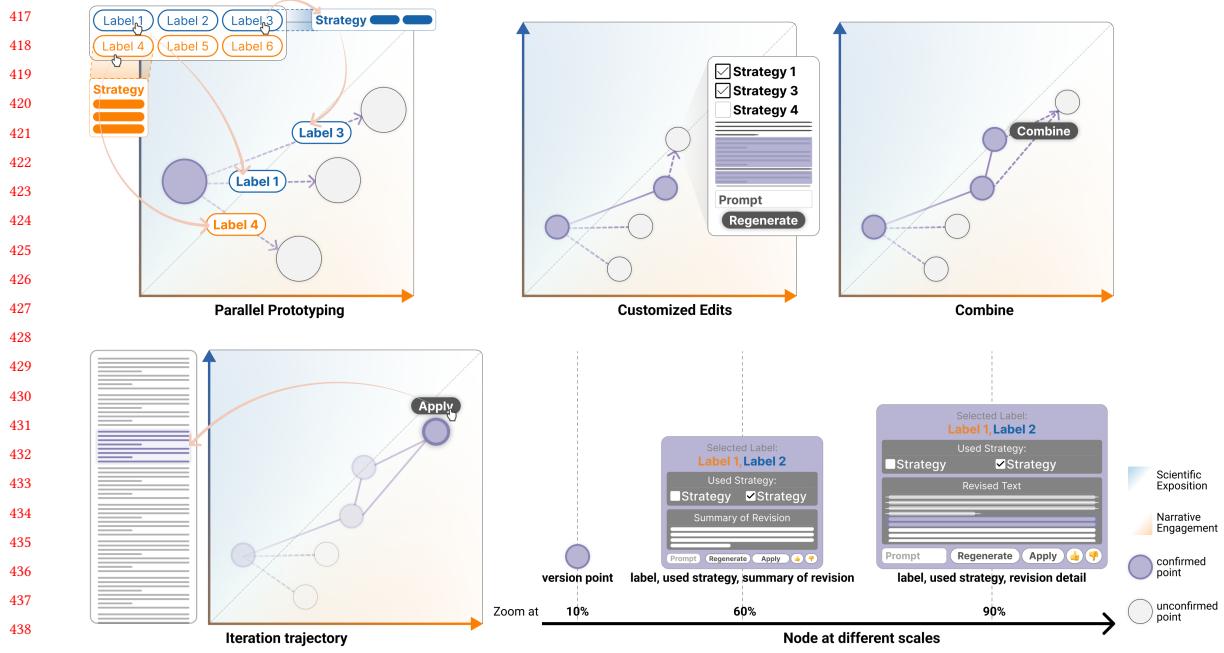
327 Drawing from the findings of the existing literature on science communication, as well as pilot testing on initial
328 prototype and expert interview, we have established the following design goals:
329

330 **Design Goal 1: Use Spatial Balancing to Visualize Trade-offs between Exposition and Narrative Engagement**
331 **in Science Communication Writing.** Prior work highlights the need to balance accurate exposition with engaging
332 storytelling in science communication [25, 38, 62], and our formative interviews (Section 3.1) confirm that authors
333 struggle to manage this tension. Writers often face implicit trade-offs—risking drafts that lean too heavily toward
334 exposition or narrative—yet these shifts are difficult to track at the local level. To address this, the system should
335 make both dimensions visible, helping authors evaluate relative levels of exposition and engagement without cognitive
336 overload.
337

338 **Design Goal 2: Guide Revisions with Strategy Scaffolds.** Prior literature documents many techniques to address
339 distinct communication objectives (see Section 3.3). Yet, LLM usage often requires authors to manually break down tasks
340 and design prompts, which can be demanding [82]. The system should therefore scaffold strategies—offering prompts,
341 labels, etc. that help authors systematically select and apply approaches best suited to their communication goals. This
342 reduces the burden of recalling strategies and allows for more deliberate, goal-oriented writing process.
343

344 **Design Goal 3: Enable Flexible Exploration and Granular Controls Through Multi-Version Revision.** Prior
345 work [3, 65, 95, 98, 99] and our formative interviews show that in iterative revision, science communicator often relies
346 on LLMs to explore multiple possibilities in pursuit of a specific goal, and then to perform fine-grained modifications
347 within the selected direction. Yet effective writing frequently arises from exploring multiple possibilities through
348 iterative drafting and deep refinement of specific version [26]. Thus, the system should therefore support multi-version
349 revision with non-linear history tracking and granular editing controls, enabling authors to revisit, merge, or revert
350 drafts flexibly.
351

352 **Design Goal 4: Embed Reflection Within Iterations to Support Self-Monitoring.** Effective science communication
353 with LLMs requires not only generating content but also iteratively revising and evaluating drafts with
354 feedback [49]. Our formative study further underscored that authors receive little timely, fine-grained feedback during
355 revision, leaving them to rely largely on intuition. To address this gap, the system should integrate lightweight reflection
356 cues (e.g., visual indicators or checkpoints) into the workflow, prompting authors to pause, assess, and recalibrate.
357 These signals help writers stay aligned with their goals and maintain control of the revision process.
358


Table 1. Labels of Science Communication Writing Strategies.

Scientific Exposition			
Label 1 Articulate Precisely	Label 2 Elaborate Thoroughly	Label 3 Verify Knowledge	Label 4 Maintain Logical Consistency
Communicates scientific concepts with exposition and clarity, using appropriate terminology and well-defined language to prevent ambiguity or misinterpretation [44, 48, 64].	Provides sufficient detail or comprehensive theoretical discussion by unpacking underlying mechanisms, explaining implications, and citing evidence to elaborate on the knowledge point while avoiding bias [52, 69].	Supports claims with credible sources, data, or reasoning, allowing audiences to feel more trustworthy of the given information [52, 73].	Ensures that arguments and explanations are coherent and internally consistent, following a clear logical structure [89].
Strategies:			
(4) Acknowledge Uncertainties, (5) Consistent Terminology, (18) Simplify and abstract language, (19) Clarify Key Terms, (21) Repeat key point(s) or question(s), (22) Emphasize with Numbers	(3) Step-by-Step Explanation, (4) Acknowledge Uncertainties, (7) Everyday Events to Scientific Insights, (22) Emphasize with Numbers, (25) Tie Science to Current Events	(2) Rigorous Source Verification, (6) Citations & Quotes, (7) Everyday Events to Scientific Insights, (22) Emphasize with Numbers, (7) Everyday Events to Scientific Insights Events	(1) Layered Transitions, (3) Step-by-Step Explanation, (20) Key Point Recap, (23) Strengthen the Connections Between Content
Narrative Engagement			
Label 5 Captivate & Immerse	Label 6 Enhance Understanding	Label 7 Inspire Curiosity	Label 8 Evoke Emotion
Engages the audience's attention and draws them into the narrative or content flow by adding stories [38, 57] or using intriguing language [29, 64].	Help audiences to grasp complex scientific ideas using rational, structural content or vivid analogies, visualizations [29, 38, 43].	Stimulates the audience's desire to learn more and have motivation to further explore by applying different forms of questions [53].	Creates an emotional response, positive or negative, and makes the audience feel connected to the content, even immerse themselves in the described scenario [38, 74].
Strategies:			
(8) Question-Answer Hook, (9) Reflection Question, (10) Suspense-Driven Reveal, (11) Use metaphors, (12) Inject humor, (13) Add real-world supporting examples, (14) Add stories, (15) Add an imagery description, (16) Create negative emphasis for focused attention, (17) Make positive emotion to expand action repertoire	(11) Use metaphors, (13) Add real-world supporting examples, (14) Add stories, (15) Add an imagery description, (21) Repeat key point(s) or question(s), (23) Strengthen the Connections Between Content, (24) Present Balanced Views, (25) Tie Science to Current Events	(8) Question-Answer Hook, (9) Reflection Question, (10) Suspense-Driven Reveal	(9) Reflection Question, (12) Inject humor, (14) Add stories, (16) Create negative emphasis for focused attention, (17) Make positive emotion to expand action repertoire, (21) Repeat key point(s) or question(s)

Note. Specific information about each strategy (e.g., definitions, examples) is presented in Table 4.

3.3 Strategies for Science Communication Narrative Design

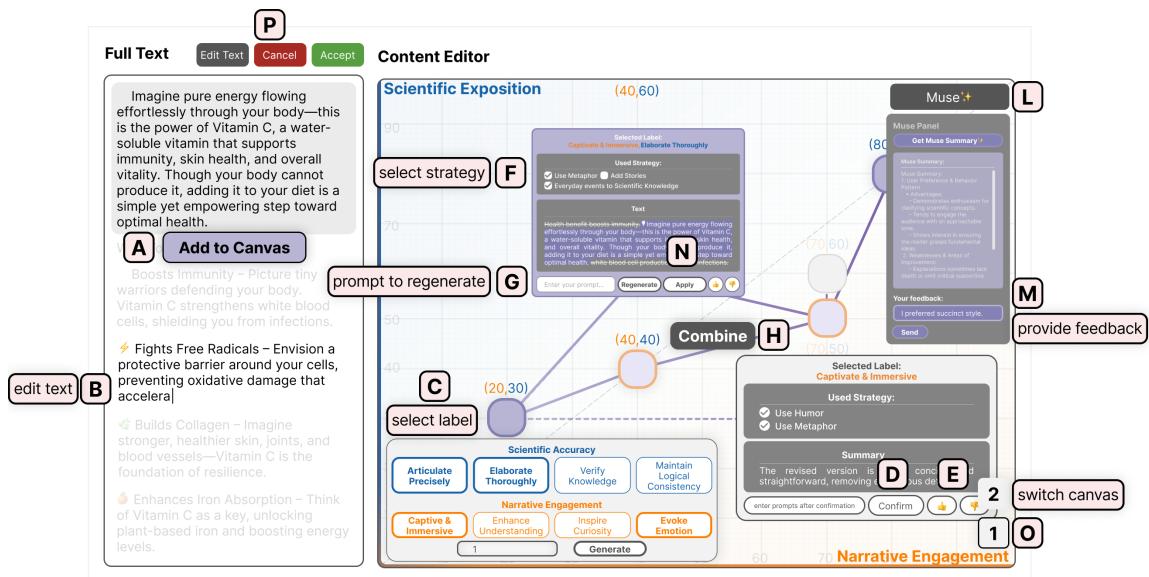
Based on the results from the pilot interviews, we conducted a literature review in related fields, specifically in communication studies, education, psychology, linguistics and writing, and HCI, to identify writing strategies that can enhance narrative engagement and scientific exposition. We searched keywords "science communication" OR "scientific writing" OR "popular science" AND "strategy" OR "strategies" OR "method" in Google Scholar, the ACM Digital Library, and the IEEE Xplore Digital Library. After screening the abstract and full paper, we selected 47 papers, across Education (N=5), Psychology (N=7), Communication Studies (N=27), Linguistics and Writing (N=4), and HCI (N=6). We identified a total of 25 strategies from these selected papers. By using open coding [41] and design space analysis [10] methods, two authors developed and organized a design space (Table 4).

440 Fig. 2. (1) SpatialBalancing support parallel prototyping with diverse directions of LLM output; Authors can use customized edits
 441 like change specific strategy and combine different LLM output to generate new nodes. The 2D coordinate space also allow author
 442 to see their iteration trajectory. (2) SpatialBalancing canvas supports three zoom levels: dots for version overview (0–30%), change
 443 summaries with labels and strategies (40–70%), and full content with highlights of edits (80–100%).

444
 445 In this design space, we categorized the 25 identified strategies into three groups: those that enhance narrative
 446 engagement (N=10), those that enhance scientific exposition (N=7), and those that enhance both (N=8). Then, we
 447 conducted a Focus Group Discussion (FGD) [71] with the four experts. Together, we refined our initial strategy design
 448 space by clarifying the definition and use of each strategy, and classified the communication strategies by their functions.
 449 This process yielded four labels each for scientific exposition and narrative engagement. Some strategies, due to their
 450 multifunctionality, were assigned to multiple labels, forming the final design space (Table 1).
 451

452 The defined strategies and their usage will serve as a prompts library for LLMs to support strategy selection and
 453 modification, while the corresponding examples will be applied in few-shot learning (Section 3.5.1).
 454

455 3.4 Interface Design


456 3.4.1 *SpatialBalancing Overview*. SpatialBalancing comprises a left-hand text editor and a right-hand exploratory
 457 canvas (Figure 3). Authors can send any span—sentence, paragraph, or full draft—to the canvas for iterative revision.
 458 Each version is plotted in a 2D space (x: Narrative Engagement; y: Scientific Exposition); gray points denote exploratory
 459 drafts and purple points mark confirmed selections, which can be further refined via labels or custom edits. This spatial
 460 view makes revision states and decision points explicit, helping authors balance exposition and engagement.
 461

462 The canvas supports branch-based exploration with three zoom levels (Figure 2). Dropped text becomes a root node;
 463 applying labels or custom instructions spawns child nodes, forming a tree that traces exploration paths. At 0–30% zoom,
 464 points provide an overview; at 40–70%, summaries show per-version changes and chosen strategies; at 80–100%, full
 465

469 text with diffs against the original is displayed. This progressive disclosure enables rapid comparison and reflective
 470 choice among alternatives.
 471

472 *Real-time Two-Axis Feedback (DG1 & DG4).* Based on insights from metacognitive research, authors benefit from
 473 explicit feedback that reduces the cognitive burden of juggling multiple objectives (DG1) and allows self-monitoring of
 474 revision progress and alignment with writing intention (DG4). In SpatialBalancing, each version of the text is plotted as
 475 a point in a two-dimensional space, with one axis representing *narrative engagement* and the other *scientific exposition*.
 476 A “Scorer Agent,” trained on audience ratings, assigns scores whenever authors drag a new piece of text into the canvas
 477 to create a node or perform additional edits that generate additional nodes. These scores determine the position of each
 478 node on the coordinate axes. By projecting revisions into a two-dimensional semantic space, the system externalizes
 479 abstract trade-offs into spatial patterns, supporting human spatial reasoning to quickly perceive balance. Meanwhile,
 480 the LLM-based Scorer Agent provides the linguistic intelligence to interpret audience-rated dimensions (engagement,
 481 exposition) and translate them into scores.
 482

483 **3.4.2 Strategy Recommendation via Eight Labels (DG1 & DG2).** (Figure 4 (1)) To support DG1 (reducing cognitive load)
 484 and DG2 (scaffolding revision), SpatialBalancing provides an eight-label taxonomy that represents core revision goals
 485 (e.g., inspire curiosity, elaborate thoroughly). Derived from expert interviews and literature, four labels target scientific
 486 exposition and four enhance narrative engagement. Users can select labels aligned with their revision intentions, while
 487

512 Fig. 3. The SpatialBalancing interface has two main sections: a text editor on the left for placing and directly editing source text (B),
 513 and a canvas on the right for revising selected segments (A). In the center, a visualization tracks iteration scores across narrative
 514 engagement and scientific exposition for multiple LLM-generated versions. Once a segment is confirmed for revision, authors assign
 515 labels (C) that guide editing directions and generate revision nodes. Within each node, content can be refined by entering custom
 516 prompts (G), switching strategies (F), or combining strategies from different nodes (H). Edits can be applied (N) to update the original
 517 text and view the full article. Muse (L), in the canvas’s top-right corner, provides an overview of revision history and accepts author
 518 feedback (M), which informs future strategy recommendations. Editing other article sections opens a new canvas; authors can switch
 519 between revision records via the control in the bottom-right corner (O).
 520

the LLM automatically draws on appropriate combinations of strategies to generate corresponding modifications based on the design space from the literature review as a prompt engineering library (Section 4). This design reduces the burden of recalling all possible options while guiding authors toward systematic, goal-directed revisions. The eight-label taxonomy further externalizes diffuse linguistic strategies into discrete, spatially mappable choices: authors use spatial reasoning to navigate directions, while the LLM Recommender Agent leverages linguistic intelligence to transform abstract strategies into concrete textual variants.

3.4.3 *Fine-Grained Control for Specific Versions (DG3)*. (Figure 4(2)) To support DG3, authors can refine individual nodes after exploring different branches. Once a node is confirmed, it turns purple while unconfirmed nodes remain gray, visually distinguishing revision states. Three fine-tuning operations are available: toggling previously applied strategies, providing customized prompts (e.g., “try a different metaphor” or “make this more concise”), and merging

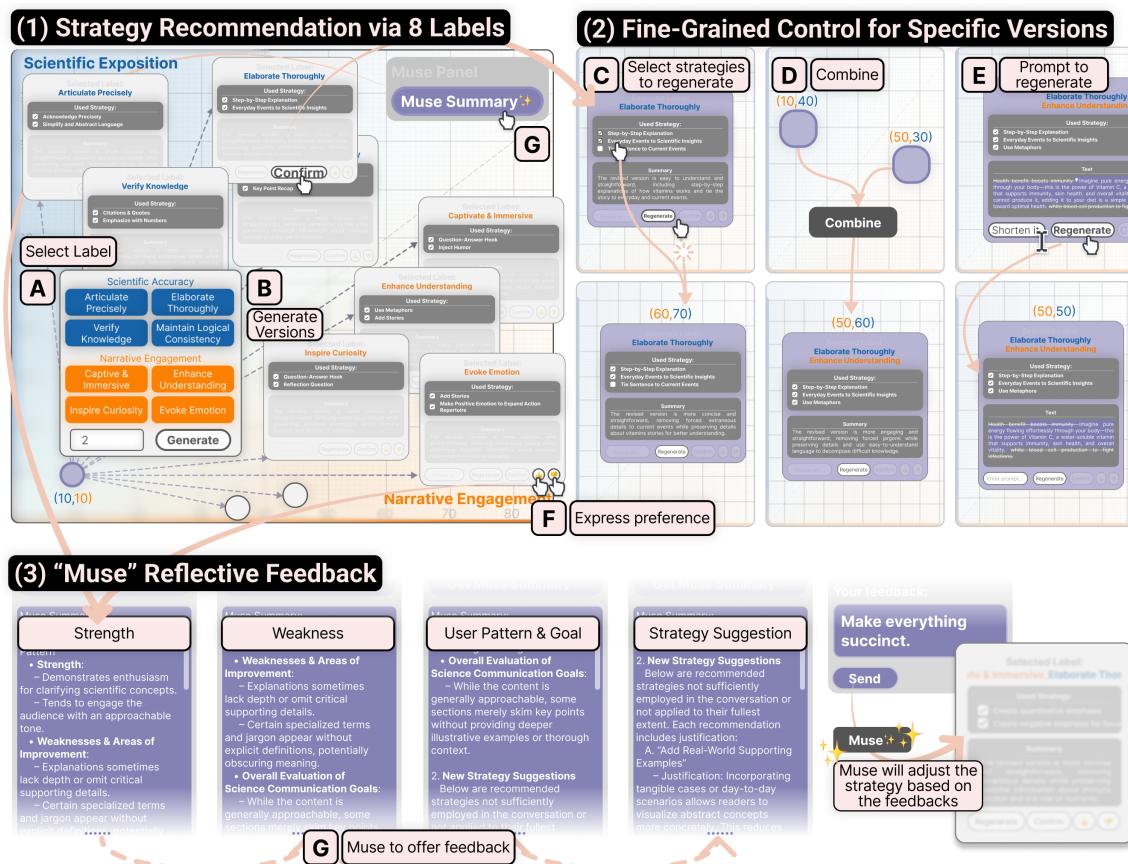
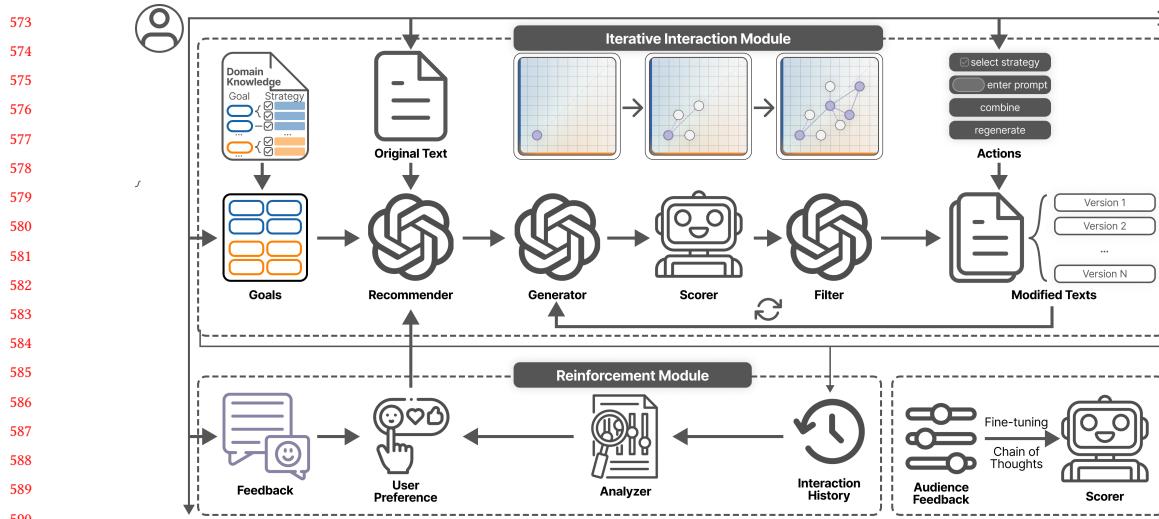



Fig. 4. (1) Strategy Recommendation via Eight Labels: SpatialBalancing offers eight revision labels—four enhancing narrative engagement and four strengthening scientific exposition. Authors can select one or more labels and specify the number of versions to generate under each; (2) Fine-Grained Control: Generated nodes can be refined by adjusting the applied strategies, merging nodes to combine labels, or entering custom prompts for tailored edits; (3) “Muse” Reflective Feedback: Muse provides iterative feedback on strengths, weaknesses, author patterns and goals, and strategy suggestions. Authors can endorse or reject this feedback, enabling the system to adapt future recommendations to their preferences.

573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624

Fig. 5. SpatialBalancing backend overview. SpatialBalancing consists of two core modules: (1) The Iterative Interaction Module, where LLM-based agents—Recommender, Generator, Scorer, and Filter—collaboratively produce and evaluate multiple content versions based on narrative engagement and scientific exposition; and (2) the Reinforcement Module, which captures author feedback and inference based on interaction history of author behaviors to refine strategy recommendations through the Analyzer agent. This architecture supports adaptive text revision.

two versions to preserve strong elements from each. Visual branching and color cues engage human spatial reasoning to organize and differentiate versions, while LLM linguistic intelligence enables precise micro-level adaptations, grounding spatial manipulations in targeted linguistic outputs.

3.4.4 “Muse” Reflective Feedback (DG3 & DG4). (Figure 4(3)) To support DG3 and DG4, the Muse agent monitors author behaviors—such as node confirmations, strategy selections, and engagement–exposition choices—and synthesizes them into structured feedback. This feedback highlights strengths, weaknesses, editing patterns, and strategy suggestions, offering a clear channel for reflection. Authors can accept or reject suggestions, and their responses are fed back to the Recommender Agent to refine future recommendations. By integrating spatial activity traces with LLM-based linguistic analysis, Muse links behavioral patterns to tailored narrative and exposition strategies, enhancing self-awareness and promoting iterative refinement.

3.5 Backend and Implementation

The backend of SpatialBalancing comprises several LLM-based agents organized into two main modules: a generation module and a reinforcement module. The overall pipeline is in Figure 5.

3.5.1 *Generation Module*. This module begins by capturing the author’s context and their selected modification labels. The system then proceeds into iterative processing handled by the following agents:

Recommender Agent: The recommender agent’s core function is to generate multiple strategy combinations based on a author-selected label. When a author chooses a label, the agent analyzes the current textual features to identify the best combination from its associated strategy set (Section 3.3). Prompts are constructed using in-context learning and chain-of-thought principles based on the strategy design space (Table 4). The agent considers several factors when

Manuscript submitted to ACM

625 recommending strategies for each label, including strategy definitions, usage guides, examples, and the original text's
 626 role within the broader context of the entire text to recommend the most suitable strategies. The final output consists
 627 of multiple strategy combinations, which are then passed to the scorer to filter and select the top-scoring versions that
 628 has higher scientific exposition or narrative engagement score.

629 *Generator Agent:* The generator agent create child nodes based on author input instructions. When generating
 630 new content, the generator receives two types of input to form a new node: (1) strategy recommendations from the
 631 Recommender Agent, which are used to guide the generation of revised text that aligns with the author's chosen
 632 direction (Labels). The generator adopts in-context learning, referencing the recommended strategies' definitions, usage
 633 guidelines, and examples to perform content modifications based on the previous node (adopted from Section 3.3); and
 634 (2) author-specific refinements passed from the front end during regeneration. These refinements may include prompt
 635 adjustments, combining nodes, or deactivating particular strategies.

636 *Scorer Agent:* The scorer simulates real-time audience feedback by evaluating each generated version along two axes:
 637 Narrative Engagement (X) and Scientific Exposition (Y).

638 To support this, we curated a high-quality dataset of 45 science texts from five common science communication
 639 domain, varying in length and narrative style. Each text was revised by a science communication expert and annotated
 640 by 27 non-experts using a rubric developed by three domain experts. The rubric incorporated sub-dimensions of
 641 narrative engagement and scientific exposition (perceived credibility over strict factual correctness of the narrative).
 642 Scores were normalized to a 0–100 scale and used to fine-tune a GPT-4o model via a small-sample learning strategy¹.
 643 This enables the scorer agent to give score to resemble human audience across both scientific exposition and narrative
 644 engagement. The scorer agent is powered by this fine-tuned GPT-4o model. Details on dataset construction and model
 645 training are provided in Appendix A.2.

646 To validate the reliability of the scoring mechanism, we conducted a technical evaluation comparing the accuracy of
 647 fine-tuned and non-fine-tuned scorers in simulating audience ratings. As shown in Table 2, the fine-tuned scorer exhibited
 648 much higher agreement with human ratings ($r=0.90/0.91$, $RMSE\approx6-7$) than the non-fine-tuned model ($r=0.84/0.57$,
 649 $RMSE=22-31$). Detailed evaluation detail is provided in Appendix A.2.

650 Table 2. Evaluation of the similarity between fine-tuned and original GPT-4o models' scores and human scores.

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676	663 664 665 666 667 668 669 670 671 672 673 674 675 676		663 664 665 666 667 668 669 670 671 672 673 674 675 676	
663 664 665 666 667 668 669 670 671 672 673 674 675 676	663 664 665 666 667 668 669 670 671 672 673 674 675 676	663 664 665 666 667 668 669 670 671 672 673 674 675 676	663 664 665 666 667 668 669 670 671 672 673 674 675 676	663 664 665 666 667 668 669 670 671 672 673 674 675 676
w/ FT	0.90	0.91	6.48	7.02
w/o FT	0.84	0.57	22.48	30.90

667 *Filter Agent:* This agent uses the scorer's outputs to select the top- k versions that best meet the author's expectations.
 668 Filter Agent ensures that the selected outputs not only fulfill the intended modification chosen direction (Labels) and
 669 achieve high scores but also filter out generated failures and low-quality content. This prevents content redundancy
 670 and enhances overall generation quality.

671 3.5.2 *Reinforcement Module.* Since author iterations form a tree of nodes enriched with valuable data (selected labels,
 672 prompts, likes /dislikes, and feedback), we developed an analyzer agent to harness both the explicit and implicit

673 ¹https://platform.openai.com/docs/guides/fine-tuning?utm_source=chatgpt.com

677 signals from these interactions. The analyzer agent captures behavioral data during the iterative process and uses
 678 chain-of-thought prompts to interpret author revision behavior.
 679

680 *Analyzer Agent:* The analysis pursues two main goals: (1) identifying common editing patterns, including stylistic
 681 preferences, trade-offs between scientific exposition and narrative engagement, and individual author strengths or
 682 weaknesses; and (2) uncovering alternative or underused strategy directions. These insights are passed to the Muse
 683 component (Section 3.4.4). After the author provides feedback on the LLM’s suggestions through Muse, the Analyzer
 684 Agent incorporates this real-time feedback (e.g., approvals or further edits) and updates the Recommender Agent
 685 accordingly. This process refines subsequent strategy recommendations, ensuring that each iteration aligns more closely
 686 with the author’s preferences and habits. The feedback loop enables the system to adapt continuously to personal
 687 writing habits while balancing narrative engagement and scientific exposition throughout the revision process.
 688

689
 690 *3.5.3 Implementation.* SpatialBalancing is implemented as a web application, with a Python-based backend developed
 691 using Flask² framework and a frontend built using ReactFlow³.
 692

693 For the AI agents, we employ different LLMs tailored to their functional roles. The recommender, generator, and filter
 694 agents are powered by the GPT-4o-mini model, optimized for fast, high-quality content generation. The analyzer agent,
 695 which requires deeper reasoning to interpret author behavior and editing patterns, is supported by the GPT-o1 model—a
 696 reasoning-oriented LLM. For the scorer agent, it is powered by a fine-tuned GPT-4o model using a small-sample
 697 learning strategy⁴. The frontend into predefined prompt templates and communicates with the remote LLMs to obtain
 698 results. This modular design allows us to tailor agent behavior based on context while maintaining flexibility in prompt
 699 construction and LLM selection. The detailed use of prompts in the backend can be found in the Appendix A.7.
 700

701 4 User Study

702 To further understand the effect of the SpatialBalancing system on users’ experience during the science communication
 703 narrative writing process—particularly its impact on users’ cognition and human-AI collaboration behavior patterns,
 704 we conducted a within-subjects user study involving 16 participants with prior experience in science communication.
 705 All participants were recruited from a local university. Each participant completed four text editing tasks: two using the
 706 SpatialBalancing system and two using a baseline system.
 707

708 The baseline system used in this study was an interface consisting of a text editor and a conversational agent
 709 (powered by GPT-4o) that supported inline editing and suggestions from LLM. In both conditions, participants were
 710 provided with an Excel file containing a comprehensive strategy table. This table included the strategy name, definition,
 711 usage instructions, examples, and corresponding labels. Participants were encouraged to use this table as a reference
 712 and to copy-paste content into the prompt area as needed during the tasks.
 713

714 4.1 Participants

715 We recruited 16 participants (9 male, 7 female; aged: 24-31 ($M = 26.9$, $SD = 2.0$)), all of whom held postgraduate degrees
 716 or higher. Most were PhD students, postdoctoral researchers, or university faculty members affiliated with a local
 717 university, possessing substantial experience in academic work, teaching, or public science communication.
 718

719 Our system was not designed solely for expert science communicators but for a broad range of users with science
 720 communication needs, reflecting the growing diversity of science communication content creators in online platform [95,
 721

722
 723 ²<https://flask.palletsprojects.com/en/stable/>

724 ³<https://github.com/wbkd/react-flow/>

725 ⁴https://platform.openai.com/docs/guides/fine-tuning?utm_source=chatgpt.com

98, 99]. Thus, participants varied in experience: 13 had hands-on practice in science communication (e.g., teaching undergraduates, producing explanatory media, or translating complex ideas), with six holding hybrid professional roles as creators, producers, journalists, or educators, while three primarily identified as consumers of science communication. LLM writing tool use also varied, with six using them daily, six weekly, and four occasionally. In terms of confidence, eight considered themselves strong science writers, while the other eight reported a more neutral stance, suggesting openness to support in expressing complex concepts for diverse audiences. The demographic information of these participants are in Appendix A.5.

4.2 Procedure

Each study session began with a live demonstration of the system. Participants were encouraged to explore the interface, try out features, and ask questions. During this walkthrough, the task objectives were also explained.

Each participant completed four text editing tasks: two using the SpatialBalancing system and two with the baseline. The texts were selected to represent two common styles of science communication: expository (e.g., “How mRNA Vaccines Work,” “Criteria for Animal Domestication”) and narrative storytelling (e.g., “Discovery of Archimedes’ Principle,” “Living and Thriving with ADHD”). Participants were asked to imagine two specific scenarios: (1) for the expository text: “I have a scientific narratives. How can I make it more engaging and interesting for an online science video?”; (2) for the narrative storytelling text: “I have a story as online science video narratives. How can I link it with more scientific concepts and add scientific credibility?” The length of each text averaged 297.75 words (SD = 19.64). The complete versions of the source texts used for the editing tasks are provided in Appendix A.3. To ensure balanced exposure and mitigate order effects or personal topic preferences, we counterbalanced both the system order (SpatialBalancing vs. baseline) and the text type assigned to each system. Thus, each participant edited one expository and one narrative text under each system condition.

Throughout the tasks, participants were encouraged to think aloud, verbalizing their thoughts, reasoning, and feelings as they interacted with the systems. All sessions were screen-recorded, and system interaction logs—such as button clicks (e.g., label selections, generate, regenerate, prompt input, combine)—were automatically captured for the SpatialBalancing condition.

4.3 Post-Task Survey and Instruments

After completing both conditions, participants completed a post-task survey with standardized instruments: the System Usability Scale (SUS) [6], NASA-TLX for workload [40], and the Creative Self-Efficacy Index (CSI) [12], with one item adapted to: “I think this system supported me in developing ideas or text collaboratively.”

We also developed a concise co-creation survey targeting two metacognitive constructs from cognitive psychology [30, 79]. Metacognitive knowledge assessed awareness of cognitive goals (e.g., “I am aware of my writing goals during the editing process”). Metacognitive regulation captured planning, monitoring, and evaluation [70] (e.g., “I set specific goals for the narrative,” “I reflect on editing strategies while using the AI tool,” and “I reviewed the narrative to assess how well it communicated scientific content”). These items were adapted from the Metacognitive Awareness Inventory [79] and aligned with recent insights into AI-induced metacognitive demands. To measure perceived control during co-creation, we included items inspired by Human-AI interaction principles [90], focusing on participants’ influence over outputs and narrative direction. Perceived autonomy was assessed according to Self-Determination Theory [20], addressing decision-making freedom, expressive latitude, and resistance to system pressure. The full list of items on metacognition, control, and autonomy is provided in Appendix A.4.

781 All instruments (NASA-TLX, SUS, CSI, and co-creation survey) employed a 7-point Likert scale. After task completion,
 782 each participant joined a 15-minute semi-structured interview designed to capture deeper insights into cognitive
 783 processes, feature usage, perceived system value, and moments of difficulty or breakthrough. These interviews comple-
 784 mented survey responses and enriched our understanding of user experience across both conditions.
 785

786 5 Results

787 Our evaluation demonstrates that spatial reasoning serves as a powerful cognitive framework for managing the inherent
 788 tensions in science communication writing, transforming abstract balancing acts into concrete spatial navigation
 789 tasks. By externalizing the two-dimensional tradeoff between scientific exposition and narrative engagement through
 790 coordinate visualization, users developed enhanced spatial awareness of their revision choices, enabling them to treat
 791 writing quality not as a singular metric but as a navigable landscape with distinct directional goals. This spatial approach
 792 fundamentally shifted users' metacognitive processes, with participants showing significantly improved reflection on
 793 writing strategies ($M = 5.50$ vs. 4.63 , $p = .013$) and strategic flexibility in adjusting approaches during editing ($M = 5.69$
 794 vs. 4.56 , $p = .016$) as they learned to "read" their position within the exposition-engagement space.
 795

796 The spatial representation encouraged iterative exploration and balance-seeking behaviors, with users demonstrating
 797 significantly enhanced creative exploration ($M = 5.13$ vs. 3.69 , $p = .004$) and increased enjoyment of the writing process
 798 ($M = 5.19$ vs. 4.13 , $p = .039$) compared to traditional linear revision approaches. Remarkably, these cognitive and
 799 creative gains were achieved without imposing additional mental workload, as NASA-TLX results showed no significant
 800 differences across all six dimensions despite the system's expanded spatial reasoning capabilities. These findings reveal
 801 how spatial reasoning principles can be leveraged to scaffold complex writing decisions, enabling writers to develop
 802 more sophisticated mental models of quality that support both immediate revision choices and long-term strategic
 803 development.
 804

805 5.1 RQ1: Spatial Reasoning in Science Communication Writing

806 5.1.1 *2D Coordinate Visualization Facilitates Spatial Balancing for Informed Revision Decisions.* The coordinate graph
 807 provides a persistent, actionable reference that maps abstract writing tradeoffs into tangible representation. Each node
 808 represents a version evaluated on two key dimensions: scientific exposition and narrative engagement. Most participants
 809 found the visualization facilitated revision prioritization. As P3 noted, "The coordinate graph is a feature that typical AI
 810 tools lack. It keeps me from getting lost balancing the two dimensions during revisions." Participants used scores to
 811 guide focus: P12 said, "I refer to the scores to decide which dimension I need to improve," while P6 observed, "If the two
 812 dimensions differ too much, it reminds me to pay attention to the other." By externalizing internal writing tradeoffs, the
 813 system facilitated metacognitive regulation through visualization of revision alignment and iteration comparison.
 814

815 Besides, participants also used the graph to make informed revision decisions. P8 shared, "I can see strengths and
 816 weaknesses by comparing nodes; if scientific exposition drops, I adjust accordingly in the next generation." P10 added,
 817 "With the baseline, I had to judge on my own with no version comparison. Now I check if the engagement score is
 818 higher before reading carefully." The 2D coordinate space not only helps authors anticipate the direction of subsequent
 819 revisions but also enables them to compare and select among multiple versions based on their positions within the
 820 space. As P16 noted, "With multiple nodes, I can intuitively compare positions across dimensions, making differences
 821 clear and direct." Visual comparisons reinforced editorial confidence. As P3 explained, "Coordinate scores help me align
 822 edits with my standards and visually track progress; seeing engagement scores rise reinforces my decisions. It makes
 823 me feel that I am heading in the right direction."

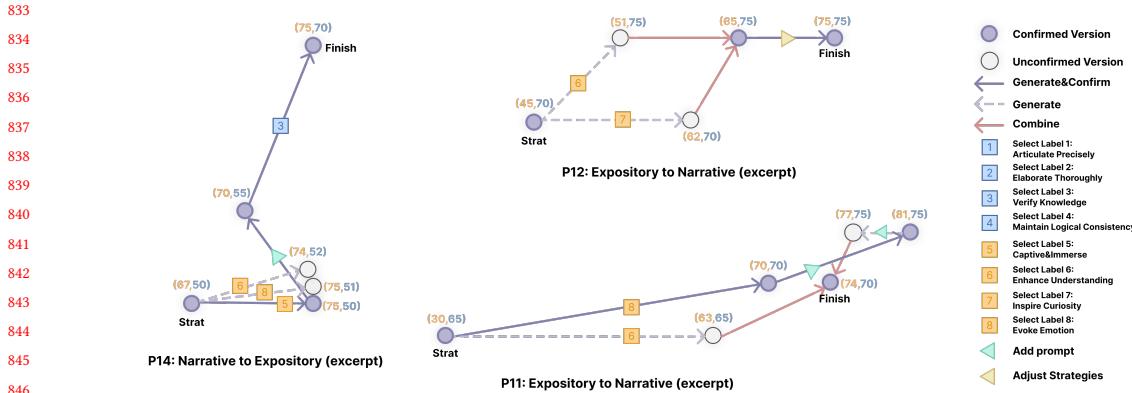
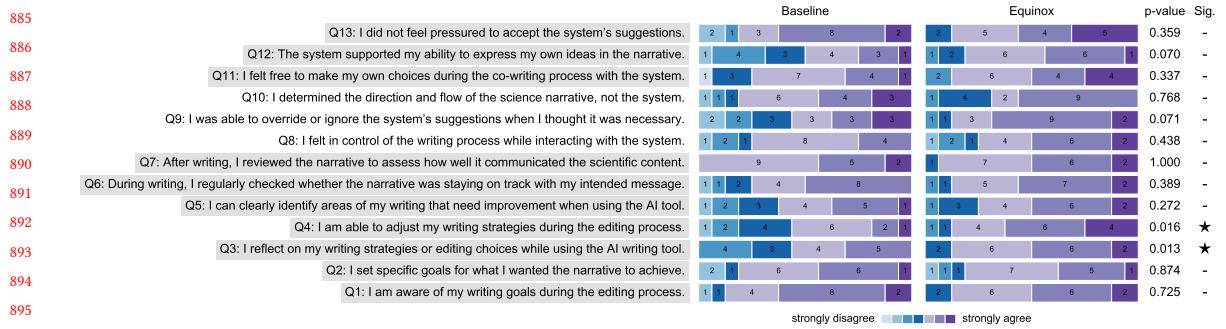


Fig. 6. Visualization examples of segment revisions from P11, P12, and P14.

In sum, the coordinate graph mapped scientific exposition and narrative engagement into a 2D space, helping authors compare versions and prioritize revisions. Participants used scores and positions to externalize tradeoffs, improving focus and efficiency. Visualization reinforced their sense of progress and boosted confidence in revision decisions.


5.1.2 Spatial Visualization Drives Iterative Balance-Seeking. The process of using the coordinate axes to assess current versions along the two dimensions constructively drove further iterations. As illustrated in Appendix A.6 (Figure 10), when attempting to add storytelling and narrative elements to expository content, participants initially selected labels associated with narrative engagement. However, during later iterations, they often returned to labels targeting scientific exposition in order to restore balance.

This kind of iteration can also be observed in Figure 6. For example, in the case of P14, when she attempted to revise a text from a narrative storytelling version to one with more scientific expression and explanatory content, she initially selected the label *Captivate & Immerse*, along with other engagement-enhancing labels. After fine-tuning the text at that stage using prompts, she realized the need to further improve scientific exposition. As a result, she selected the *Verify Knowledge* label and eventually accepted the final version.

This iterative back-and-forth highlights how spatial balancing supports users in dynamically regulating tradeoffs, ensuring their revisions move toward a more deliberate and well-aligned balance between exposition and engagement.

5.2 RQ2: Impact on Metacognitive Regulation and Creative Exploration

5.2.1 Enhanced Metacognitive Regulation and User Agency. To evaluate the system's impact on users' ability to reason about and adjust their writing strategies, we measured participants' reflection and adaptation while using SpatialBalancing to revise two articles from two directions. The results of metacognition, control, and autonomy are shown in Figure 7. SpatialBalancing received significantly higher ratings than the baseline on two dimensions: Q3- reflecting on one's own strategies ($M = 5.50$ vs. 4.63 , $p = .013$) and Q4- adjusting strategies during the editing process ($M = 5.69$ vs. 4.56 , $p = .016$). These results suggest that SpatialBalancing supports users in dynamically managing their writing strategies. For other dimensions, such as identifying areas for improvement, goal setting, and progress monitoring, SpatialBalancing also showed higher means.

885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936

Fig. 7. Results of the Metacognition (Q1–Q7), Control (Q8–Q10), and Autonomy (Q11–Q13) questionnaires ($p < .05$ marked with *; $p < .01$ with **). Significant differences were observed in Metacognition: Q3 ($M = 5.50$ (SpatialBalancing) vs. 4.63 (Baseline), $p = .013$) and Q4 ($M = 5.69$ vs. 4.56 , $p = .016$); marginal differences in Control: Q9 ($M = 5.63$ vs. 4.75 , $p = .071$) and Autonomy: Q12 ($M = 5.25$ vs. 4.44 , $p = .070$).

In terms of perceived control and autonomy, participants rated SpatialBalancing slightly higher across all items, especially in their ability to Q9- override system suggestions ($M = 5.63$ vs. 4.75 , $p = .071$) and Q12- express their own ideas ($M = 5.25$ vs. 4.44 , $p = .070$), although these did not reach significance. These trends indicate that SpatialBalancing fosters a stronger sense of authorship and agency in the LLM-supported writing process.

These findings indicate that SpatialBalancing enhances users' capacity for reflection and adaptation while reinforcing their role as active decision-makers. By supporting strategy calibration and the assertion of personal ideas, the system cultivates authorship and agency in the LLM-supported writing process.

5.2.2 Enabling Creativity Through Low-Cost, Flexible Exploration. The CSI questionnaire revealed that participants rated SpatialBalancing significantly higher in "Exploration" ($M = 5.13$ vs. 3.69 (Baseline), $p = .004$) and "Enjoyment" ($M = 5.19$ vs. 4.13 , $p = .039$), indicating better support for exploring diverse narrative directions and enhanced writing experience. SpatialBalancing showed higher averages across all CSI items, demonstrating effective idea exploration without sacrificing usability (Figure 8).

Participants described interactions as playful and exploratory. P11 reflected, "I wanted to see how different strategies under the same label changed output, so I generated multiple versions. It gave me room to play and test." The system minimized cognitive overhead, enabling low-stakes, high-feedback interaction that encouraged curiosity.

The system provides flexibility for exploring multiple balancing directions while supporting fine-tuned adjustments within chosen axes. Unlike the baseline's linear process, this canvas-based interface facilitates parallel comparison and ongoing exploration. P6 noted, "These labels give me several options with different focuses simultaneously. I can choose one version to develop further and still return to earlier iterations after generating new branches." This non-linear workflow enabled reflective comparison without premature commitment.

The system occasionally catalyzed unexpected creativity. P11 recalled selecting "enhance understanding," which automatically inserted a metaphor: "That metaphor was so on-point, I hadn't even thought about that kind of revision before." Such moments illustrate potential for conceptual innovation beyond users' initial expectations.

Quantitative findings support this: participants rated SpatialBalancing higher for flexibility to "adjust writing strategies during editing" ($M = 5.69$ vs. 4.56 , $p = .016$) (Figure 7 Q4) and exploration support for "diverse ideas and outcomes" ($M =$

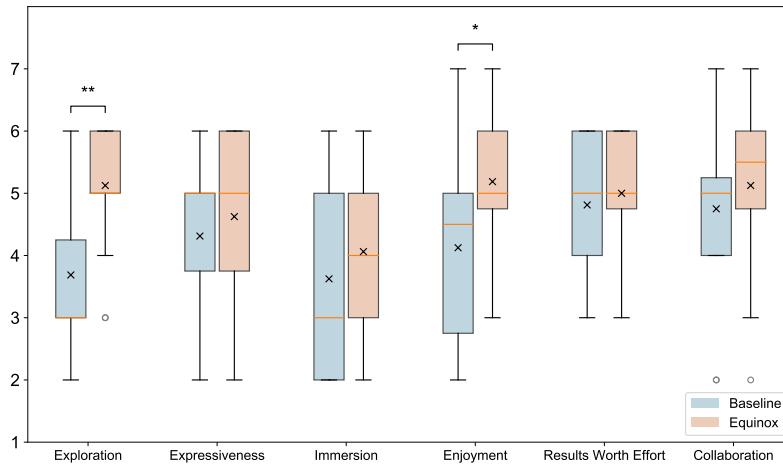


Fig. 8. The results of CSI questionnaire. (*: $p < 0.05$ and **: $p < 0.01$). Participants rated SpatialBalancing significantly higher in terms of "Exploration" ($M = 5.13$ (SpatialBalancing) vs. 3.69 (Baseline), $p = .004$) and "Enjoyment" ($M = 5.19$ vs. 4.13 , $p = .039$)

5.13 vs. 3.69 , $p = .004$) (Figure 8 Exploration). SpatialBalancing supports creativity by lowering experimentation costs, broadening revision possibilities, and enabling non-linear idea exploration.

Through playful interaction, flexible branching, and occasional novel rhetorical strategies, it encourages curiosity while maintaining user control, transforming revision from a constrained, linear task into an open-ended creative process.

5.2.3 Reflective Feedback through "Muse" Enhances Self-Awareness. Muse helps users recognize revision strengths and gaps through reflective feedback that mirrors their editorial process. P1 described a moment while revising Archimedes' principle: "A metaphor suggested by Muse struck me: buoyant force equals displaced water's weight, like balanced scale arms. This visual analogy illuminated the concept for me." Such feedback supports both evaluation and awareness of conceptual gaps.

The feedback prompted internalization of new strategies. P15 noted, "I started using strategies I hadn't tried before, and remembered to use them again." Several participants described how feedback reframed their broader writing approach. P6 said, "I started seeing where I tend to do well or poorly. Muse pointed out strengths I didn't even realize I had." P10 explained, "With more guidance during revision, I felt like I was internalizing a way of thinking. Even without the system, I'd know how to approach future writing."

This aligns with quantitative results showing SpatialBalancing better supports "reflecting on my writing strategies and choices" ($M = 5.5$ vs. 4.63 (Baseline), $p = .013$) (Figure 7 Q3). These results highlight that Muse's feedback fosters durable reflective habits that enhance self-awareness, strategic flexibility, and long-term writer development beyond immediate revisions.

5.3 RQ3: Interface Features' Contribution to Writing Quality and User Experience

5.3.1 Strategy Labels Enable Structured Exploration without Cognitive Overload. We evaluated cognitive workload and usability using NASA-TLX and SUS questionnaires (Table 3). NASA-TLX showed no significant differences between SpatialBalancing and baseline, indicating SpatialBalancing doesn't impose additional cognitive burden despite expanded

		SpatialBalancing		Baseline		Statistics		
		mean	std	mean	std	p-value	Sig.	
989 990 991 992 993 994 995 996	NASA-TLX	Mental Demand	4.63	1.36	4.19	1.68	.404	—
		Physical Demand	3.19	1.60	2.63	0.96	.261	—
		Temporal Demand	2.63	1.36	3.19	1.38	.343	—
		Effort	3.94	1.39	4.44	1.79	.241	—
		Performance	5.13	0.89	4.88	0.96	.372	—
		Frustration	2.88	1.59	3.00	1.32	.724	—
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008	SUS	Q1: use frequently	5.13	1.54	4.38	1.36	.155	—
		Q2: unnecessarily complex	3.00	1.41	2.94	0.85	.899	—
		Q3: easy to use	4.94	1.69	4.88	1.15	.964	—
		Q4: need support	3.94	1.91	2.81	1.87	.031	*
		Q5: function well integrated	5.13	1.26	3.44	1.36	.003	**
		Q6: inconsistency	3.06	1.39	3.25	1.53	.719	—
		Q7: learn to use quickly	4.88	1.59	5.06	1.44	.604	—
		Q8: awkward	2.44	1.26	2.50	1.37	.927	—
		Q9: confident	4.50	1.32	4.50	1.37	.812	—
		Q10: need learning	3.81	1.56	3.38	1.89	.397	—
		Overall Score	70.78	29.70	68.44	26.94	.729	—

Table 3. The statistical results of NASA-TLX and SUS questionnaires. (*: $p < 0.05$ and **: $p < 0.01$).

1011
1012 features. SUS revealed SpatialBalancing was more functionally integrated (Q5, $p = .003$) but required more user
1013 support (Q4, $p = .031$), suggesting richer capabilities with a learning curve. Overall usability scores were comparable:
1014 SpatialBalancing ($M = 70.78$) vs. baseline ($M = 68.44$).

1015 According to participants(P1, P3, P6), this may be structured labels's ability to support strategy awareness and goal-
1016 oriented control by decomposing abstract objectives into manageable steps. Labels provide clear guidance and reduce
1017 the effort required for strategy knowledge retrieval, transforming ambiguous tasks into navigable concrete actions.
1018 User feedback revealed that labels not only improved execution efficiency ("strategies are packaged and I just click and
1019 go"(P7)) but also encouraged breaking habitual patterns and exploring new editorial approaches ("it gave me methods I
1020 hadn't considered"(P12)). Overall, the system maintains comparable usability while offering enhanced functionality
1021 through structured scaffolding, demonstrating that thoughtful interface design can expand users' capabilities without
1022 increasing cognitive load.

1023
1024
1025
1026 5.3.2 *The Tension Between Guidance and User Judgment.* Participants described how the system's visual and scoring
1027 feedback may influence their evaluation practices in subtle ways. While the coordinate axis enabled intuitive comparisons
1028 between revisions, some participants noted that the visibility and immediacy of scores could reduce their depth of
1029 textual engagement. As P4 reflected, "I outsourced a large part of the thinking process to the AI. It's faster and more
1030 efficient, but I also tend to think less carefully about the output as I trust the score results more than I did with the
1031 baseline."

1032
1033
1034 Others expressed a degree of caution about over-relying on the scores. P16 noted that while the visual feedback
1035 was useful, "the scores are indicative rather than definitive. They sometimes do not reflect the actual quality of the
1036 generation and still require human judgment." Concerns about the interpretability of scoring were also raised. As P14
1037 said, "Sometimes I don't know what an increase in score actually means. I can't tell whether each label contributes
1038 differently to the score or what specific content led to a higher score. I want to understand the logic behind the numbers."

1041 These reflections suggest a potential tension: while the system offers accessible and actionable feedback, its effectiveness
1042 depends on users' ability to critically interpret the signals rather than accept them at face value. The interpretability of
1043 the scores also needs to be improved, as indicated by some participants.

1044
1045 5.3.3 *Experienced Writers Seek More Flexible and Customizable Labels.* While the fixed label set was seen as a helpful
1046 starting point, some experienced users felt it could be expanded to better support their advanced needs. P3, a seasoned
1047 science communicator, shared: "The eight labels are a solid foundation, but I would appreciate a broader set to support
1048 more diverse explorations." P1, P3, P2, and P14, all of whom are experienced science communicators or experienced
1049 writers, expressed interest in more customizable labels, such as they can combining or tailoring underlying strategies
1050 to form customized labels to align more closely with their specific goals. P14 also noted, "In addition to the current
1051 style-focused labels, it would be helpful to include others that target areas in writing revision like grammar or tone."
1052 This indicates a demand for labels that can be tailored to individual needs.
1053
1054

1055
1056 5.3.4 *Muse as a Future Co-Editor.* While participants appreciated what Muse could already do, many imagined what it
1057 might become. P2 wanted more real-time dialogue: "I wish it were more interactive—like chatting with someone who
1058 helps me reflect as I go." P14 hoped for more adaptability: "The more I use it, the more I want it to understand how I
1059 write and suggest things based on that." Others wished for more precision in the feedback. "Right now, Muse gives
1060 high-level suggestions," one participant said. "But it'd be more useful if it could point to which step or decision was
1061 strong or weak, and explain why." These comments suggest that participants saw Muse not just as a tool for generating
1062 or revising text, but as a partner that could grow with them—learning their writing style, giving relevant feedback, and
1063 helping them refine how they think through revisions.
1064
1065

1066 6 Discussion

1067 6.1 Designing Mixed-Initiative Human–AI Collaboration through Spatial Reasoning and LLM Linguistic 1068 Intelligence: Insights and Implications for Future Systems

1069 LLMs have increasingly approached—and in some cases surpassed—human capabilities in generating fluent and diverse
1070 text. Yet despite these advances, LLMs remain limited in managing multi-objective trade-offs and comprehending
1071 abstract structures. Humans, in contrast, excel at spatial reasoning: visualizing abstract relationships, navigating
1072 multidimensional spaces, and balancing competing goals holistically. This asymmetry motivates combining comple-
1073 mentary strengths so that humans remain active shapers of communicative outcomes rather than passive recipients of
1074 machine-generated text. Notably, just three years ago researchers were exploring transforming visual sketches into
1075 stories [13]; today, leveraging spatial reasoning to harness LLM linguistic intelligence has shifted from a desirable
1076 option to an essential capability.

1077 Building on this motivation, our evaluation shows that integrating spatial reasoning with LLM linguistic capabilities
1078 turns complex writing decisions from abstract balancing acts into concrete navigational tasks. (1) By externalizing the
1079 two-dimensional trade-off between scientific exposition and narrative engagement via coordinate visualization, users
1080 employed spatial cognition to rapidly evaluate LLM outputs using positions as a reference beyond textual reading,
1081 increasing confidence in co-directing revision trajectories. (2) This spatial–linguistic integration yielded significant
1082 benefits: users leveraged iterative coordinate trajectories to better understand content development, exercised stronger
1083 control over LLM collaboration, and performed parallel comparison of multiple LLM outputs by spatial positioning to
1084 make better judgments—supporting richer exploration and greater enjoyment.
1085
1086

Following Tankelevitch et al.'s [86] dual-path framework, SpatialBalancing supports metacognition in two complementary ways. First, it *enhances* abilities by translating revision goals into spatial waypoints that scaffold planning (set targets), monitoring (track position/trajectory), and strategic control (retarget direction); strategy labels render intent explicit with predictable effects [94]. Second, it *reduces* metacognitive demand by shifting evaluative effort to ambient spatial cues: heuristic zones offer stopping rules for confidence calibration, and lattice/zoom views enable quick screening-to-detail transitions with lower working-memory load, yielding efficient, low-friction judgments [85].

Situating these contributions within related research, our spatial-linguistic approach complements *direct-manipulation and node-based systems* that emphasize stepwise control (e.g., ForceSPIRE [28]; Drag-and-Track [68]; WaitGPT [96]) as well as *graph- and tree-inspection approaches* (e.g., Sensecape [84]; Luminate [83]). It further extends *sketch- and fragment-driven spatial storytelling tools* (e.g., PatchView [14]; Toyteller [15]) by directly mapping rhetorical goals—exposition versus engagement—into a navigable space for in-situ steering of linguistic outputs across scales (from macro narrative to micro style).

Together, these results highlight fundamental **design principles** for future mixed-initiative systems that integrate human spatial cognition with LLM linguistic capabilities.

- (1) Spatial-guided linguistic generation: users should dynamically define evaluation axes that direct LLM text production toward specific rhetorical goals, enabling spatial positioning to inform corresponding LLM linguistic adjustments from macro-narrative shifts to micro-stylistic changes.
- (2) Direct spatial-linguistic manipulation: interfaces should allow users to drag coordinate nodes to generate linguistically-targeted revisions, where spatial movements trigger corresponding linguistic transformations that match desired positional targets.
- (3) Collaborative spatial orchestration: systems should enable multiple contributors to spatially coordinate LLM linguistic outputs across different regions, positioning human spatial intelligence as the steering mechanism for orchestrating LLM generative capabilities in shared authoring contexts.
- (4) Adaptive scaffolding: systems should dynamically adjust spatial guidance based on task complexity and user expertise, transitioning from dense spatial cues for novices to sparse, configurable environments for experts. This prevents over-dependence on LLMs while fostering collaborative metacognitive partnerships.
- (5) Metacognitive transparency: systems should make LLM reasoning processes spatially visible, enabling users to understand why certain regions are highlighted. Such transparency supports appropriate trust calibration and maintains critical evaluation skills, ensuring that human spatial intelligence and LLM capabilities mutually enhance rather than replace each other in complex decision-making.

6.2 Limitation and Future Work

We describe several limitations in the study to define the scope of our findings clearly and motivate future work.

6.2.1 Lack of Evaluation on Text Quality and Communication Effectiveness. One limitation of the current study is the absence of a systematic evaluation of the generated texts. While the system produces revised versions of scientific narratives, we did not assess whether these revisions lead to improvements in quality for science communication purposes. Future studies could investigate whether the generated texts are more engaging, whether they enhance the perceived exposition of the information, or whether they facilitate better knowledge retention among audiences. Objective and subjective measures, such as engagement metrics, audience feedback, and comprehension tests, could be employed to evaluate the effectiveness of the texts in real-world science communication settings.

1145 6.2.2 *Evaluation Dependency on Proxy Scores.* Although SpatialBalancing provides real-time feedback on scientific
1146 exposition and narrative engagement, this feedback is generated by a model trained on proxy metrics (e.g., perceived
1147 credibility and engagement from non-experts). While useful, these proxies may not fully capture the nuance of
1148 effectiveness in real-world science communication. Actual audience reactions in diverse contexts (e.g., classroom
1149 learning vs. YouTube videos) may differ from model predictions. Therefore, the reliability and generalizability of the
1150 scoring system should be validated further.
1151

1152 6.2.3 *Methodological Limitations.* This work has common methodological limitations including the short-term nature
1153 of system testing which may not reveal long-term adoption patterns, and the relatively homogeneous participant
1154 demographics that may not represent all potential user groups. Future work will aim to address the previously mentioned
1155 and these limitations through more comprehensive evaluations.
1156

1158 7 Conclusion

1159 We presented SpatialBalancing, a writing interface that harnesses human spatial reasoning to navigate LLM-generated
1160 revision options in science communication. By visualizing the trade-off between scientific exposition and narrative
1161 engagement in a dual-axis space, the system enables users to iteratively balance competing communicative goals
1162 through spatial navigation. Our study shows this approach enhances metacognitive regulation and creative exploration,
1163 demonstrating how coupling human spatial cognition with AI linguistic capabilities supports deliberate revision toward
1164 balanced science communication.
1165

1166 References

1167 [1] J Craig Andrews and Terence A Shimp. 2018. *Advertising, promotion, and other aspects of integrated marketing communications*. Cengage Learning.
1168 [2] Isabelle Augenstein. 2021. Determining the credibility of science communication. *arXiv preprint arXiv:2105.14473* (2021).
1169 [3] Tal August, Lauren Kim, Katharina Reinecke, and Noah A Smith. 2020. Writing strategies for science communication: Data and computational
1170 analysis. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*. 5327–5344.
1171 [4] Besma Boubertak. 2015. Towards Further Experimental Reproducibility: Making A Balance Between Conciseness, Precision and Comprehensive-
1172 ness in Scientific Communication. *Journal of Neurology and Stroke* 3, 1 (Oct. 2015). <https://doi.org/10.15406/JNSK.2015.03.00077>
1173 [5] Peter Broks. 2006. *Understanding popular science*. McGraw-Hill Education (UK).
1174 [6] John Brooke et al. 1996. SUS-A quick and dirty usability scale. *Usability evaluation in industry* 189, 194 (1996), 4–7.
1175 [7] Terry W Burns, D John O'Connor, and Susan M Stocklmayer. 2003. Science communication: a contemporary definition. *Public understanding of
1176 science* 12, 2 (2003), 183–202.
1177 [8] Rick Busselle and Helena Bilandzic. 2009. Measuring narrative engagement. *Media psychology* 12, 4 (2009), 321–347.
1178 [9] Rocco Caferra, Giuseppe Di Liddo, Andrea Morone, and David Stadelmann. 2025. The media morphosis of science communication during crises.
1179 *Scientific Reports* 15, 1 (2025), 5506.
1180 [10] Stuart K Card, Jock D Mackinlay, and George G Robertson. 1991. A morphological analysis of the design space of input devices. *ACM Transactions
1181 on Information Systems (TOIS)* 9, 2 (1991), 99–122.
1182 [11] Jin Chen, Zheng Liu, Xu Huang, Chenwang Wu, Qi Liu, Gangwei Jiang, Yuanhao Pu, Yuxuan Lei, Xiaolong Chen, Xingmei Wang, et al. 2024.
1183 When large language models meet personalization: Perspectives of challenges and opportunities. *World Wide Web* 27, 4 (2024), 42.
1184 [12] Erin Cherry and Celine Latulipe. 2014. Quantifying the creativity support of digital tools through the creativity support index. *ACM Transactions
1185 on Computer-Human Interaction (TOCHI)* 21, 4 (2014), 1–25.
1186 [13] John Joon Young Chung, Wooseok Kim, Kang Min Yoo, Hwaran Lee, Eytan Adar, and Minsuk Chang. 2022. TaleBrush: Sketching Stories
1187 with Generative Pretrained Language Models. In *CHI Conference on Human Factors in Computing Systems*. ACM, New Orleans LA USA, 1–19.
1188 <https://doi.org/10.1145/3491102.3501819>
1189 [14] John Joon Young Chung and Max Kreminski. 2024. Patchview: LLM-Powered Worldbuilding with Generative Dust and Magnet Visualization. In
1190 *Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology*. 1–19.
1191 [15] John Joon Young Chung, Melissa Roememele, and Max Kreminski. 2025. Toyteller: AI-powered Visual Storytelling Through Toy-Playing with
1192 Character Symbols. <https://doi.org/10.1145/3706598.3713435> arXiv:2501.13284 [cs].
1193 [16] Michael F Dahlstrom. 2014. Using narratives and storytelling to communicate science with nonexpert audiences. *Proceedings of the National
1194 Academy of Sciences* 111, Supplement 4 (2014), 13614–13620.
1195

1197 [17] Michael F. Dahlstrom. 2014. Using narratives and storytelling to communicate science with nonexpert audiences. *Proceedings of the National Academy of Sciences* 111, supplement_4 (2014), 13614–13620. <https://doi.org/10.1073/pnas.1320645111> arXiv:<https://www.pnas.org/doi/pdf/10.1073/pnas.1320645111>

1198 [18] Michael F. Dahlstrom and Dietram A. Scheufele. 2018. (Escaping) the paradox of scientific storytelling. *PLOS Biology* 16, 10 (10 2018), 1–4. <https://doi.org/10.1371/journal.pbio.2006720>

1199 [19] Andreas W Daum. 2009. Varieties of popular science and the transformations of public knowledge: some historical reflections. *Isis* 100, 2 (2009), 319–332.

1200 [20] Edward L Deci and Richard M Ryan. 2012. Self-determination theory. *Handbook of theories of social psychology* 1, 20 (2012), 416–436.

1201 [21] Zijian Ding. 2024. Towards Intent-based User Interfaces: Charting the Design Space of Intent-AI Interactions Across Task Types. *arXiv preprint arXiv:2404.18196* (2024).

1202 [22] Zijian Ding, Michelle Brachman, Joel Chan, and Werner Geyer. 2025. “The Diagram is like Guardrails”: Structuring GenAI-assisted Hypotheses Exploration with an Interactive Shared Representation. (2025).

1203 [23] Zijian Ding, Fenghai Li, Haofei Yu, and Joel Chan. [n. d.]. Towards Direct Intent Manipulation: Drag-Based Research Ideation, Evaluation and Evolution. ([n. d.]).

1204 [24] Anne DiPardo. 1990. Narrative knowers, expository knowledge: Discourse as a dialectic. *Written communication* 7, 1 (1990), 59–95.

1205 [25] Julie S. Downs. 2014. Prescriptive scientific narratives for communicating usable science. *Proceedings of the National Academy of Sciences* 111, supplement_4 (Sept. 2014), 13627–13633. <https://doi.org/10.1073/pnas.1317502111> Publisher: Proceedings of the National Academy of Sciences.

1206 [26] Grant Eckstein, Jessica Chariton, and Robb Mark McCollum. 2011. Multi-draft composing: An iterative model for academic argument writing. *Journal of English for academic purposes* 10, 3 (2011), 162–172.

1207 [27] Lee Ellis. 2022. Improving Scientific Communication by Altering Citation and Referencing Methods. *Journal of Social Science Studies* 9, 1 (2022), 1–1. <https://doi.org/10.5296/jsss.v9i1.19548>

1208 [28] Alex Endert, Patrick Fiaux, and Chris North. 2012. Semantic Interaction for Visual Text Analytics. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '12)*. ACM, New York, NY, USA, 473–482. <https://doi.org/10.1145/2207676.2207741>

1209 [29] Wiebke Finkler and Bienvenido León-Anguiano. 2019. The power of storytelling and video: a visual rhetoric for science communication. (2019).

1210 [30] John H Flavell. 1979. Metacognition and cognitive monitoring: A new area of cognitive–developmental inquiry. *American psychologist* 34, 10 (1979), 906.

1211 [31] Laura Fogg-Rogers, Ann Grand, and Margarida Sardo. 2015. Beyond dissemination – Science communication as impact. 14, 3 (Sept. 2015). <https://doi.org/10.22323/2.14030301>

1212 [32] Barbara L Fredrickson. 2004. The broaden-and-build theory of positive emotions. *Philosophical transactions of the royal society of London. Series B: Biological Sciences* 359, 1449 (2004), 1367–1377.

1213 [33] Eric L Garland, Barbara Fredrickson, Ann M Kring, David P Johnson, Piper S Meyer, and David L Penn. 2010. Upward spirals of positive emotions counter downward spirals of negativity: Insights from the broaden-and-build theory and affective neuroscience on the treatment of emotion dysfunctions and deficits in psychopathology. *Clinical psychology review* 30, 7 (2010), 849–864.

1214 [34] Katy Ilonka Gero and Lydia B. Chilton. 2019. Metaphoria: An Algorithmic Companion for Metaphor Creation. In *Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems* (Glasgow, Scotland Uk) (CHI '19). Association for Computing Machinery, New York, NY, USA, 1–12. <https://doi.org/10.1145/3290605.3300526>

1215 [35] Katy Ilonka Gero, Vivian Liu, and Lydia Chilton. 2022. Sparks: Inspiration for Science Writing using Language Models. In *Proceedings of the 2022 ACM Designing Interactive Systems Conference* (Virtual Event, Australia) (DIS '22). Association for Computing Machinery, New York, NY, USA, 1002–1019. <https://doi.org/10.1145/3532106.3533533>

1216 [36] Katy Ilonka Gero, Vivian Liu, and Lydia Chilton. 2022. Sparks: Inspiration for science writing using language models. In *Proceedings of the 2022 ACM Designing Interactive Systems Conference*. 1002–1019.

1217 [37] Katy Ilonka Gero, Vivian Liu, Sarah Huang, Jennifer Lee, and Lydia B Chilton. 2021. What makes tweeterials tick: How experts communicate complex topics on twitter. *Proceedings of the ACM on Human-computer Interaction* 5, CSCW2 (2021), 1–26.

1218 [38] Manuela Glaser, Bärbel Garsoffky, and Stephan Schwan. 2009. Narrative-based learning: Possible benefits and problems. (2009).

1219 [39] Jean Goodwin and Michael F. Dahlstrom. 2014. Communication strategies for earning trust in climate change debates. *WIREs Climate Change* 5, 1 (2014), 151–160. <https://doi.org/10.1002/wcc.262> arXiv:<https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcc.262>

1220 [40] Sandra G Hart. 1986. NASA task load index (TLX). (1986).

1221 [41] Judith A Holton. 2007. The coding process and its challenges. *The Sage handbook of grounded theory* 3 (2007), 265–289.

1222 [42] Tianle Huang and Will J. Grant. 2020. A Good Story Well Told: Storytelling Components That Impact Science Video Popularity on YouTube. *Frontiers in Communication* 5 (Oct. 2020). <https://doi.org/10.3389/fcomm.2020.581349> Publisher: Frontiers.

1223 [43] Tianle Huang and Will J Grant. 2020. A good story well told: Storytelling components that impact science video popularity on YouTube. *Frontiers in Communication* 5 (2020), 86.

1224 [44] Oksana Ivchenko and Natalia Grabar. 2022. Impact of the Text Simplification on Understanding. In *Challenges of Trustable AI and Added-Value on Health*. IOS Press, 634–638. <https://doi.org/10.3233/SHTI220546>

1225 [45] Peiling Jiang, Jude Rayan, Steven P. Dow, and Haijun Xia. 2023. Graphologue: Exploring Large Language Model Responses with Interactive Diagrams. <https://doi.org/10.1145/3586183.3606737> arXiv:2305.11473 [cs].

1249 [46] Klemens Kappel and Sebastian Jon Holmen. 2019. Why science communication, and does it work? A taxonomy of science communication aims
1250 and a survey of the empirical evidence. *Frontiers in communication* 4 (2019), 55.

1251 [47] Jagdish Kaur. 2012. Saying it again: enhancing clarity in English as a lingua franca (ELF) talk through self-repetition. *Text & Talk* 32, 5 (Jan. 2012),
1252 593–613. <https://doi.org/10.1515/TEXT-2012-0028>

1253 [48] Martin Kerwer, Anita Chasiotis, Johannes Stricker, Armin Günther, and Tom Rosman. 2021. Straight From the Scientist's Mouth—Plain Lan-
1254 guage Summaries Promote Laypeople's Comprehension and Knowledge Acquisition When Reading About Individual Research Findings in
1255 Psychology. *Collabra: Psychology* 7, 1 (02 2021), 18898. <https://doi.org/10.1525/collabra.18898> arXiv:https://online.ucpress.edu/collabra/article-pdf/7/1/18898/835600/collabra_2021_7_1_18898.pdf

1256 [49] Jeongyeon Kim, Sangho Suh, Lydia B Chilton, and Haijun Xia. 2023. Metaphorian: Leveraging Large Language Models to Support Extended
1257 Metaphor Creation for Science Writing. In *Proceedings of the 2023 ACM Designing Interactive Systems Conference*. 115–135.

1258 [50] Markus Knauff. 2013. *Space to reason: A spatial theory of human thought*. Mit Press.

1259 [51] Laura M König, Marlene S Altenmüller, Julian Fick, Jan Crusius, Oliver Genschow, and Melanie Sauerland. 2024. How to communicate science
1260 to the public? Recommendations for effective written communication derived from a systematic review. *Zeitschrift für Psychologie* (2024).
1261 <https://doi.org/10.1027/2151-2604/a000572>

1262 [52] Christoph Kueffer and Brendon M. H. Larson. 2014. Responsible Use of Language in Scientific Writing and Science Communication. *BioScience* 64,
1263 8 (06 2014), 719–724. <https://doi.org/10.1093/biosci/biu084> arXiv:<https://academic.oup.com/bioscience/article-pdf/64/8/719/8719054/biu084.pdf>

1264 [53] Joe Lambert. 2013. *Digital storytelling: Capturing lives, creating community*. Routledge.

1265 [54] Mina Lee, Katy Ilonka Gero, John Joon Young Chung, Simon Buckingham Shum, Vipul Raheja, Hua Shen, Subhashini Venugopalan, Thiemo
1266 Wambsganss, David Zhou, Emad A. Alghamdi, Tal August, Avinash Bhat, Madiha Zahrah Choksi, Senjuti Dutta, Jin L.C. Guo, Md Naimul Hoque,
1267 Yewon Kim, Simon Knight, Seyed Parsa Neshaei, Antoinette Shibani, Disha Shrivastava, Lila Shroff, Agnia Sergeyuk, Jessi Stark, Sarah Sterman,
1268 Sitong Wang, Antoine Bosselut, Daniel Buschek, Joseph Chee Chang, Sherol Chen, Max Kreminski, Joonsuk Park, Roy Pea, Eugenia Ha Rim Rho,
1269 Zejiang Shen, and Pao Siangliulue. 2024. A Design Space for Intelligent and Interactive Writing Assistants. In *Proceedings of the CHI Conference on
1270 Human Factors in Computing Systems*. ACM, Honolulu HI USA, 1–35. <https://doi.org/10.1145/3613904.3642697> rate: 4.

1271 [55] Robert A Lehrman and Eric Schnure. 2019. *The Political Speechwriter's Companion: A Guide for Writers and Speakers*. CQ Press.

1272 [56] Marcia C Linn. 2025. Emergence and Characterization of Sex Differences in Spatial Ability: A Meta-Analysis. (2025).

1273 [57] Norma J Livo and Sandra A Rietz. 1986. Storytelling: Process and practice. (*No Title*) (1986).

1274 [58] Tao Long, Katy Ilonka Gero, and Lydia B Chilton. 2024. Not Just Novelty: A Longitudinal Study on Utility and Customization of an AI Workflow.
In *Designing Interactive Systems Conference*. ACM, IT University of Copenhagen Denmark, 782–803. <https://doi.org/10.1145/3643834.3661587>

1275 [59] Tao Long, Dorothy Zhang, Grace Li, Batool Taraif, Samia Menon, Kynnedy Simone Smith, Sitong Wang, Katy Ilonka Gero, and Lydia B Chilton.
2023. Tweetorial hooks: generative AI tools to motivate science on social media. *arXiv preprint arXiv:2305.12265* (2023).

1276 [60] Roger Maskill. 1988. Logical Language, Natural Strategies and the Teaching of Science. *International Journal of Science Education* 10, 5 (1988),
1277 485–495. <https://doi.org/10.1080/0950069880100502>

1278 [61] Damien Masson, Zixin Zhao, and Fanny Chevalier. 2025. Visual Story-Writing: Writing by Manipulating Visual Representations of Stories. (2025).

1279 [62] Daniel Gary McDonald Daniel Gary McDonald. 2014. Narrative research in communication: key principles and issues. *Review of Communication
1280 Research* 2 (2014), 115–132.

1281 [63] Julia Metag, Florian Winterlin, and Kira Klinger. 2023. science communication in the digital age—new actors, environments, and practices. *Media
1282 and Communication* 11, 1 (2023), 212–216.

1283 [64] Jesús Muñoz Morcillo, Klemens Czurda, and Caroline Trotha. 2016. Typologies of the popular science web video. *Journal of Science Communication*
1284 15 (May 2016), A02. <https://doi.org/10.22323/2.15040202>

1285 [65] Nathan Ni. [n. d.]. Building a Scientific Narrative. <https://www.the-scientist.com/building-a-scientific-narrative-71780>.

1286 [66] National Academies of Sciences, Medicine, Division of Behavioral, Social Sciences, Committee on the Science of Science Communication, and
A Research Agenda. 2017. Communicating science effectively: A research agenda. (2017).

1287 [67] Reham Omar, Ishika Dhall, Panos Kalnis, and Essam Mansour. 2023. A universal question-answering platform for knowledge graphs. *Proceedings
1288 of the ACM on Management of Data* 1, 1 (2023), 1–25.

1289 [68] Daniel Orban, Daniel F. Keefe, Ayan Biswas, James Ahrens, and David Rogers. 2019. Drag and Track: A Direct Manipulation Interface for
1290 Contextualizing Data Instances within a Continuous Parameter Space. *IEEE Transactions on Visualization and Computer Graphics* 25, 1 (Jan. 2019),
1291 256–266. <https://doi.org/10.1109/TVCG.2018.2865051>

1292 [69] Roger A Pielke Jr. 2007. *The honest broker: Making sense of science in policy and politics*. Cambridge University Press.

1293 [70] Chenghai Qin, Ruru Zhang, and Yanling Xiao. 2022. A questionnaire-based validation of metacognitive strategies in writing and their predictive
1294 effects on the writing performance of English as foreign language student writers. *Frontiers in Psychology* 13 (2022), 1071907.

1295 [71] Fatemeh Rabiee. 2004. Focus-group interview and data analysis. *Proceedings of the nutrition society* 63, 4 (2004), 655–660.

1296 [72] Marissa Radensky, Daniel S Weld, Joseph Chee Chang, Pao Siangliulue, and Jonathan Bragg. 2024. Let's Get to the Point: LLM-Supported Planning,
Drafting, and Revising of Research-Paper Blog Posts. *arXiv preprint arXiv:2406.10370* (2024).

1297 [73] Marie-Claude Roland. 2009. Quality and integrity in scientific writing: prerequisites for quality in science communication. *Journal of Science
1298 Communication* 8, 2 (2009), A04. <https://doi.org/10.22323/2.08020204>

1299

1300

1301 [74] Gillian Rowe, Jacob B Hirsh, and Adam K Anderson. 2007. Positive affect increases the breadth of attentional selection. *Proceedings of the National*
 1302 *Academy of Sciences* 104, 1 (2007), 383–388.

1303 [75] Maximilian Roßmann. 2025. Science Correction as a Communication Problem: Insights from Four Theoretical Lenses. *OSF Preprints* (3 February
 1304 2025). https://doi.org/10.31219/osf.io/82duj_v3

1305 [76] Margaret A Rubega, Kevin R Burgio, A Andrew M MacDonald, Anne Oeldorf-Hirsch, Robert S Capers, and Robert Wyss. 2021. Assessment by
 1306 audiences shows little effect of science communication training. *Science Communication* 43, 2 (2021), 139–169.

1307 [77] Carol D. Saunders, Amara T. Brook, and Olin Eugene Myers. 2006. Using Psychology to Save Biodiversity and Human Well-Being. *Conservation*
 1308 *Biology* 20, 3 (2006), 702–705. <http://www.jstor.org/stable/3879236>

1309 [78] Keegan Sawyer and Brooke Smith. 2024. Communication and engagement for basic science: insights and practical considerations. *Journal of*
 1310 *Science Communication* 23, 7 (2024), Y01.

1311 [79] Gregory Schraw and Rayne Sperling Dennison. 1994. Assessing metacognitive awareness. *Contemporary educational psychology* 19, 4 (1994),
 1312 460–475.

1313 [80] Yijia Shao, Yucheng Jiang, Theodore A Kanell, Peter Xu, Omar Khattab, and Monica S Lam. 2024. Assisting in writing wikipedia-like articles from
 1314 scratch with large language models. *arXiv preprint arXiv:2402.14207* (2024).

1315 [81] Ben Shneiderman. 1982. The future of interactive systems and the emergence of direct manipulation. *Behaviour & Information Technology* 1, 3
 1316 (1982), 237–256.

1317 [82] Hari Subramonyam, Roy Pea, Christopher Pondoc, Maneesh Agrawala, and Colleen Seifert. 2024. Bridging the gulf of envisioning: Cognitive
 1318 challenges in prompt based interactions with LLMs. In *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems*. 1–19.

1319 [83] Sangho Suh, Meng Chen, Bryan Min, Toby Jia-Jun Li, and Haijun Xia. 2024. Luminate: Structured Generation and Exploration of Design Space
 1320 with Large Language Models for Human-AI Co-Creation. In *Proceedings of the CHI Conference on Human Factors in Computing Systems*. 1–26.

1321 [84] Sangho Suh, Bryan Min, Srishti Palani, and Haijun Xia. 2023. Sensecape: Enabling Multilevel Exploration and Sensemaking with Large Language
 1322 Models. In *Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology*. ACM, San Francisco CA USA, 1–18.
 1323 <https://doi.org/10.1145/3586183.3606756>

1324 [85] Raphael Tang, Linqing Liu, Akshat Pandey, Zhiying Jiang, Gefei Yang, Karun Kumar, Pontus Stenetorp, Jimmy Lin, and Ferhan Ture. 2022. What
 1325 the daam: Interpreting stable diffusion using cross attention. *arXiv preprint arXiv:2210.04885* (2022).

1326 [86] Lev Tankelevitch, Viktor Kewenig, Auste Simkute, Ava Elizabeth Scott, Advait Sarkar, Abigail Sellen, and Sean Rintel. 2024. The metacognitive
 1327 demands and opportunities of generative AI. In *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems*. 1–24.

1328 [87] David H. Torres and Douglas E. Pruijn. 2019. Scientific storytelling: A narrative strategy for scientific communicators. *Communication Teacher* 33, 2
 1329 (April 2019), 107–111. <https://doi.org/10.1080/17404622.2017.1400679> Publisher: Routledge _eprint: <https://doi.org/10.1080/17404622.2017.1400679>.

1330 [88] Barbara Tversky, Julie Bauer Morrison, Nancy Franklin, and David J Bryant. 1999. Three spaces of spatial cognition. *The Professional Geographer*
 1331 51, 4 (1999), 516–524.

1332 [89] Gilson Luiz Volpato. 2015. O método lógico para redação científica. *Revista Eletrônica de Comunicação, Informação & Inovação em Saúde* 9, 1 (2015).
 1333 <https://doi.org/10.29397/reciis.v9i1.932>

1334 [90] Danding Wang, Qian Yang, Ashraf Abdul, and Brian Y Lim. 2019. Designing theory-driven user-centric explainable AI. In *Proceedings of the 2019*
 1335 *CHI conference on human factors in computing systems*. 1–15.

1336 [91] Nedra Kline Weinreich. 2010. *Hands-on social marketing: a step-by-step guide to designing change for good*. Sage.

1337 [92] Dustin J Welbourne and Will J Grant. 2016. Science communication on YouTube: Factors that affect channel and video popularity. *Public*
 1338 *understanding of science* 25, 6 (2016), 706–718.

1339 [93] Wikipedia contributors. 2024. Popular science – Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/Popular_science Accessed: 2025-03-27.

1340 [94] Tongshuang Wu, Michael Terry, and Carrie Jun Cai. 2022. Ai chains: Transparent and controllable human-ai interaction by chaining large language
 1341 model prompts. In *Proceedings of the 2022 CHI conference on human factors in computing systems*. 1–22.

1342 [95] Haijun Xia, Hui Xin Ng, Zhutian Chen, and James Hollan. 2022. Millions and Billions of Views: Understanding Popular Science and Knowledge
 1343 Communication on Video-Sharing Platforms. In *Proceedings of the Ninth ACM Conference on Learning@ Scale*. 163–174.

1344 [96] Liwenhan Xie, Chengbo Zheng, Haijun Xia, Huamin Qu, and Chen Zhu-Tian. 2024. WaitGPT: Monitoring and Steering Conversational LLM Agent
 1345 in Data Analysis with On-the-Fly Code Visualization. <https://doi.org/10.1145/3654777.3676374> arXiv:2408.01703 [cs].

1346 [97] Leni Yang, Xian Xu, XingYu Lan, Ziyan Liu, Shunan Guo, Yang Shi, Huamin Qu, and Nan Cao. 2021. A design space for applying the freytag's
 1347 pyramid structure to data stories. *IEEE Transactions on Visualization and Computer Graphics* 28, 1 (2021), 922–932.

1348 [98] Yu Zhang, Kexue Fu, and Zhicong Lu. 2025. RevTogether: Supporting Science Story Revision with Multiple AI Agents. *arXiv preprint arXiv:2503.01608*
 1349 (2025).

1350 [99] Yu Zhang, Changyang He, Huachen Wang, and Zhicong Lu. 2023. Understanding Communication Strategies and Viewer Engagement with
 1351 Science Knowledge Videos on Bilibili. In *Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems*. 1–18.

1352 [100] Zheng Zhang, Jie Gao, Ranjodh Singh Dhaliwal, and Toby Jia-Jun Li. 2023. Visar: A human-ai argumentative writing assistant with visual
 1353 programming and rapid draft prototyping. In *Proceedings of the 36th annual ACM symposium on user interface software and technology*. 1–30.

1354 [101] Jelena Šuto, Ana Marušić, and Ivan Buljan. 2023. Linguistic analysis of plain language summaries and corresponding scientific summaries of
 1355 Cochrane systematic reviews about oncology interventions. *Cancer Medicine* 12, 9 (2023), 10950–10960. <https://doi.org/10.1002/cam4.5825>

1353 arXiv:<https://onlinelibrary.wiley.com/doi/pdf/10.1002/cam4.5825>
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404

1405 **A Appendix**

1406

1407 **A.1 Specific Strategies for Science Communication Writing**

1408 Table 4. Design Space for Science Communication Writing

1409

1410 Category	1411 Strategy	1412 Definition	1413 Label
1414 Scientific Exposition	(1) Layered Transitions [51, 60, 75, 89]	Use multiple transition words or phrases (e.g., "but," "and," "therefore") within a short span to emphasize logical shifts and contrasts.	4
	(2) Rigorous Source Verification [2, 51, 73]	Cross-check scientific claims and data against reliable, peer-reviewed sources to ensure exposition.	3
	(3) Step-by-Step Explanation [3, 51]	Introduce the core idea first and then progressively add background details, creating a structured learning process.	2, 4
	(4) Acknowledge Uncertainties [69]	Transparently discuss uncertainties, potential biases, or limitations in data and models to build credibility.	1, 2
	(5) Consistent Terminology [52]	Use the same terminology throughout the content to maintain clarity and avoid confusion.	1
	(6) Citations & Quotes [2, 27]	Integrate citations and direct quotes seamlessly to enhance credibility while maintaining narrative flow.	3
	(7) Everyday Events to Scientific Insights [3, 52]	Automatically identify and link theories or knowledge to real-world events or stories mentioned in the text.	2, 3
1420 Narrative Engagement	(8) Question-Answer Hook [29, 42, 53]	Ask a direct question and provide an immediate answer to introduce key concepts clearly and concisely.	5, 6, 7
	(9) Reflection Question [29]	Ask a thought-provoking question that does not require an immediate answer, encouraging reflection and reinforcing key concepts.	5, 7, 8
	(10) Suspense-Driven Reveal [95, 99]	Present a question, problem, or scenario at the beginning and delay its resolution to sustain curiosity.	5, 7
	(11) Use metaphors [25, 29, 52]	Convey unfamiliar concepts by drawing analogies to more familiar ones.	5, 6
	(12) Inject humor [39]	Use playful language or puns to make the content more engaging and enjoyable.	5, 8
	(13) Add real-world supporting examples [55, 57]	Illustrate abstract concepts using relatable, real-world examples.	5, 6
	(14) Add stories [17, 18, 57]	Use narratives with characters, settings, and plot progression to enhance engagement and memorability.	5, 6, 8
	(15) Add an imagery description [1, 29, 38]	Use vivid, sensory details to help the audience visualize concepts.	5, 6
	(16) Create negative emphasis for focused attention [29, 38, 42, 64]	Highlight extreme negative outcomes to intensify focus and reinforce key lessons.	5, 8
	(17) Make positive emotion to expand action repertoire [29, 33, 38, 64, 74, 91]	Use uplifting messages, particularly in conclusions, to inspire optimism and motivation.	5, 8
1430 Both	(18) Simplify and abstract language [44, 48, 101]	Rephrase complex scientific terminology or detailed descriptions into more general, accessible language without compromising core exposition.	1, 6
	(19) Clarify Key Terms [64, 75]	Define complex or specialized terms at the beginning to establish a shared understanding.	1, 6
	(20) Key Point Recap [29, 64, 87]	Summarize the main points concisely at the conclusion of the content to reinforce memory retention.	1, 4, 6
	(21) Repeat key point(s) or question(s) [4, 47]	Reinforce key concepts by strategically repeating crucial terms or questions.	1, 6
	(22) Emphasize with Numbers [31, 97]	Connect scientific discussions to real-world recent news or trends to enhance relevance and engagement.	1, 2, 3, 8
	(23) Strengthen the Connections Between Content [60, 89]	Ensure smooth transitions between related ideas by using bridging statements or contextual links.	4, 6
	(24) Present Balanced Views [52]	Provide both supporting evidence and counterarguments to present a well-rounded discussion.	2, 6
	(25) Tie Science to Current Events [3, 52]	Connect scientific discussions to real-world recent news or relevant stories.	3, 5, 6

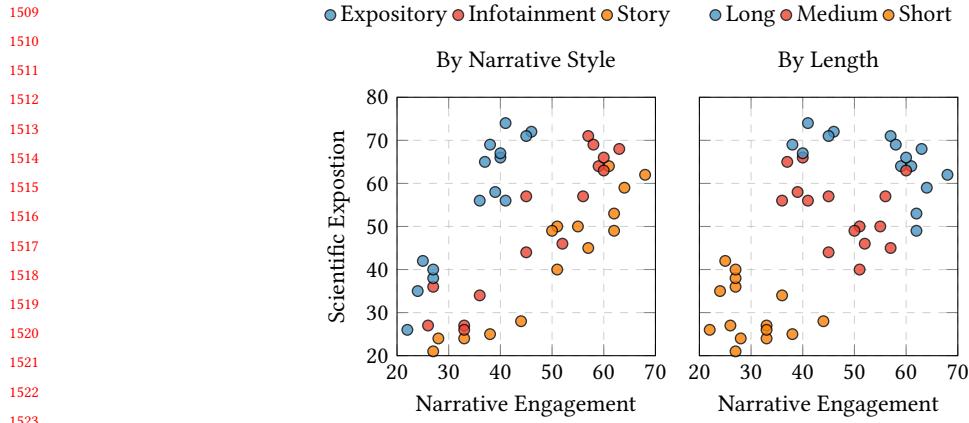
1435 ***Label:** *Scientific Exposition Effects:* 1. Articulate Precisely; 2. Elaborate Thoroughly; 3. Verify Knowledge; 4. Maintain Logical Consistency

1436 *Narrative Engagement Effects:* 5. Captivate & Immerse; 6. Enhance Understanding; 7. Inspire Curiosity; 8. Evoke Emotion

1457 A.2 Rating Model Construction

1458 Our primary goal in constructing the coordinate axis is to simulate audience feedback so that users can receive real-time
1459 evaluations. Therefore, we collected real user feedback on texts with varying characteristics to fine-tune a LLM that
1460 can provide scores during the real-time writing process.

1461 *Dataset Construction* We first built a dataset of popular science texts containing 45 texts (example in section A.2.1)
1462 from five commonly seen science communication topics: psychology, economics, geography, history, and physics. For
1463 each topic, there are nine texts; three each of long (300 words), medium (150 words), and short (50 words) formats;
1464 representing three typical levels of revision granularity in science communication. Within each length category, we
1465 included three different levels of narrative transformation: (1) purely expository scientific texts (Expository), (2) fully
1466 narrative story-like texts (Story), and (3) an intermediate "infotainment" style (Medium), which is an ideal format in
1467 popular science that maintains scientific exposition while incorporating narrative strategies from our design space. All
1468 texts were revised by an expert with two years of experience in science communication writing


1469 *Score Collection* We designed a survey to collect ratings for these texts on two dimensions: Narrative Engagement
1470 and Scientific Exposition, two main communication goals in popular science [16]. For Narrative Engagement, we used
1471 five subscales: Narrative Presence, Emotional Engagement, Narrative Understanding, Curiosity, and General Narrative
1472 Engagement, a survey developed by prior work [8]. For Scientific Exposition, given the lack of mature scales, we
1473 measured five dimensions inspired by standards for scientific texts from previous research [16]: Conceptual Clarity,
1474 Plausibility, Completeness, and Factual Correctness. When it comes to scientific exposition, our focus is more on the
1475 audience's subjective experience during reading rather than an objective verification of exposition. Since readers vary
1476 in their background knowledge, what we emphasize is not just factual correctness, but the perceived trustworthiness of
1477 how the content is presented — that is, how reliable and credible the text appears to them The full questionnaire can be
1478 found in the section .

1479 *Participants* First, we recruited three experts (each with more than one year of experience in creating science
1480 narratives) to rate the texts. After rating, they discussed and jointly established a scoring rubric, including benchmarks
1481 for each score range from 0 to 10. Next, we recruited 27 participants interested in science communication. We invite
1482 experts to establish standards as a reference point for audience ratings, in order to reduce variance in their subjective
1483 evaluations of the text. The criteria established by experts are in the Appendix A.2.3.

1484 *Survey Results* The distribution of scores for the 45 texts is displayed in the Figure 9. It is shown that story-like texts
1485 tend to elicit higher narrative engagement but exhibit lower scientific exposition. In contrast, expository texts maintain
1486 higher scientific exposition at the expense of engagement. The infotainment style appears to strike a balance between
1487 the two. Additionally, longer texts generally perform better in both dimensions, whereas shorter texts show lower
1488 overall scores, likely due to limitations in content depth and development.

1489 *Final Model Fine-Tuning* For each text, we first computed the average score across the five questions within each of
1490 the two dimensions and then averaged these scores across all 27 participants. To match the 0–100 scale of the final
1491 coordinate axis, the scores were scaled by a factor of 10. These scaled scores (representing the two dimensions) served
1492 as the output, while the corresponding text and the expert-defined criteria used as reference formed the input.

1493 During the development phase, we adopted a small-sample fine-tuning strategy to customize GPT-4o for our domain-
1494 specific application. This approach, which leverages a relatively limited number of high-quality training examples, has

1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560

Fig. 9. Each point represents one of 45 science communication texts, plotted by its average audience rating for narrative engagement (x-axis) and scientific exposition (y-axis), based on 27 crowd-sourced rubric-based evaluations per text. The left panel groups texts by narrative style: Expository (informational, fact-focused), Story (highly narrative), and infotainment (represents infotainment-style revisions that blend factual exposition with narrative strategies). The right panel groups texts by length (Short=50 words, Medium=150 words, Long=300 words).

been shown to be both efficient and practically effective in enhancing model performance on specialized tasks⁵. We prepared and uploaded the curated dataset through OpenAI’s official platform and used their fine-tuning API to tailor GPT-4o. The resulting customized model served as the backbone of our scoring system.

Technical Evaluation To validate the reliability of this scoring mechanism, we conducted a formal evaluation. We constructed a controlled dataset consisting of five source articles, each systematically rewritten into three different lengths (long, medium, short) and expressed in three different styles (expository, medium, story). This design yields nine distinct variants per article, resulting in a total of 45 text samples. From this dataset, we randomly selected 33 samples for fine-tuning GPT-4o, while reserving 12 samples for evaluation. The fine-tuned model was assessed against human ratings on two key dimensions: narrative engagement and scientific exposition. On the held-out test set, the fine-tuned model demonstrated a high degree of alignment with human judgment, achieving Pearson correlation coefficients of 0.90 and 0.91 for narrative and exposition scores, respectively. In addition, the model’s predictive reliability was reflected in RMSE values of 6.48 and 7.02. These results indicate that the fine-tuned LLM scoring mechanism can effectively approximate human evaluative patterns, thereby providing a reliable and scalable alternative to manual scoring.

A.2.1 Example of Content.

Please view the materials via this anonymous link: <https://cryptpad.fr/doc/#/2/doc/view/7V7gS5xcQdZwo0mLeBbfQe6HEgU+02HqdaupBV9tA0/>

A.2.2 Survey used for gathering audience feedback.

Please view the survey via the anonymous link: <https://cryptpad.fr/doc/#/2/doc/view/XfWs-wD3qmBXSnEC0YqM9EZg2GO+H2RJYUqrycvj1/>

⁵https://platform.openai.com/docs/guides/fine-tuning?utm_source=chatgpt.com

A.2.3 Score Criteria.

Please view the criteria via this anonymous link: <https://cryptpad.fr/doc/#/2/doc/view/uNMusLpCPWGwzqKWi04F0TY+20nW2hnG1NkS1V2BHB4/>

A.3 Materials used for experiment

Please view the materials via this anonymous link: <https://cryptpad.fr/doc/#/2/doc/view/Q3Jhj+HhzHtt9zYqyF0Sv4mziQYBp6oWl43a84Gqmeg/>

A.4 Survey**Part 1: Metacognition**

Metacognitive Knowledge: This pertains to an individual's awareness and understanding of their own cognitive processes and strategies

Q1: I am aware of my writing goals during the editing process.

Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Metacognitive Regulation: This involves the active management of one's cognitive processes through planning, monitoring, and evaluating

Q2: I set specific goals for what I wanted the narrative to achieve.

Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Q3: I reflect on my writing strategies or editing choices while using the AI writing tool. (Indicates real-time assessment of strategy effectiveness.)

Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Q4: During writing, I regularly checked whether the narrative was staying on track with my intended message.

Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Q5: I can clearly identify areas of my writing that need improvement when using the AI tool.

Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Q6: After writing, I reviewed the narrative to assess how well it communicated the scientific content.

Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Q7: I am able to adjust my writing strategies during the editing process.

Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Part 2: Control (Control:)

Q8: I felt in control of the writing process while interacting with the system.

Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Q9: I was able to override or ignore the system's suggestions when I thought it was necessary.

Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Q10: I determined the direction and flow of the science narrative, not the system.

1613 Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree
 1614
 1615

1616 **Part 3: Autonomy (Autonomy:)**

1617 Q11: I felt free to make my own choices during the co-writing process with the system.

1618 Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree
 1619

1620 Q12: The system supported my ability to express my own ideas in the narrative.

1621 Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree
 1622

1623 Q13: I did not feel pressured to accept the system's suggestions.

1624 Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree
 1625

1626 **A.5 Participants demographic information**

1627 .

1628

1629

1630

ID	Age	Gender	Education	Science Communication	AI Writing Use	Writing Confidence	Occupation
1	26	Male	Postgraduate	Experienced Creators	Occasionally	Confident	(a)
2	27	Male	Postgraduate	Expert	Daily	Confident	(a), (b), (c), (d)
3	26	Male	Postgraduate	Experienced Creators	Daily	Confident	(b), (d)
4	25	Female	Postgraduate	Experienced Creators	Daily	Confident	(a), (b), (c)
5	24	Male	Postgraduate	Experienced Creators	Daily	Confident	(a)
6	28	Female	Postgraduate	Senior Audience	Weekly	Neutral	(a)
8	28	Male	Postgraduate	Senior Audience	Occasionally	Neutral	(a)
7	29	Female	Higher than postgraduate	Experienced Creators	Daily	Confident	(a), (b)
9	31	Male	Postgraduate	Experienced Creators	Weekly	Neutral	(a)
10	24	Female	Postgraduate	Experienced Creators	Occasionally	Confident	(a), (c)
11	29	Female	Postgraduate	Experienced Creators	Weekly	Neutral	(a)
12	26	Male	Postgraduate	Experienced Creators	Weekly	Neutral	(a)
14	27	Male	Postgraduate	Experienced Creators	Daily	confident	(a), (b)
15	24	Female	Postgraduate	Senior Audience	Weekly	Neutral	(a)
16	30	Male	Postgraduate	Experienced Creators	Weekly	Neutral	(a)

1643 *Occupation:* (a) PhD Student / Postdoctoral Researcher/University Faculty / Researcher;
 1644 (b) Science Journalist / Media Producer;
 1645 (c) Educator / Teacher;
 1646 (d) Online science Content Creator (e.g., YouTube, Blog, TikTok, etc.)

1647 **A.6 User Study Results**

1648 1. Visualization of interaction behaviors from 16 participants across two revision directions:

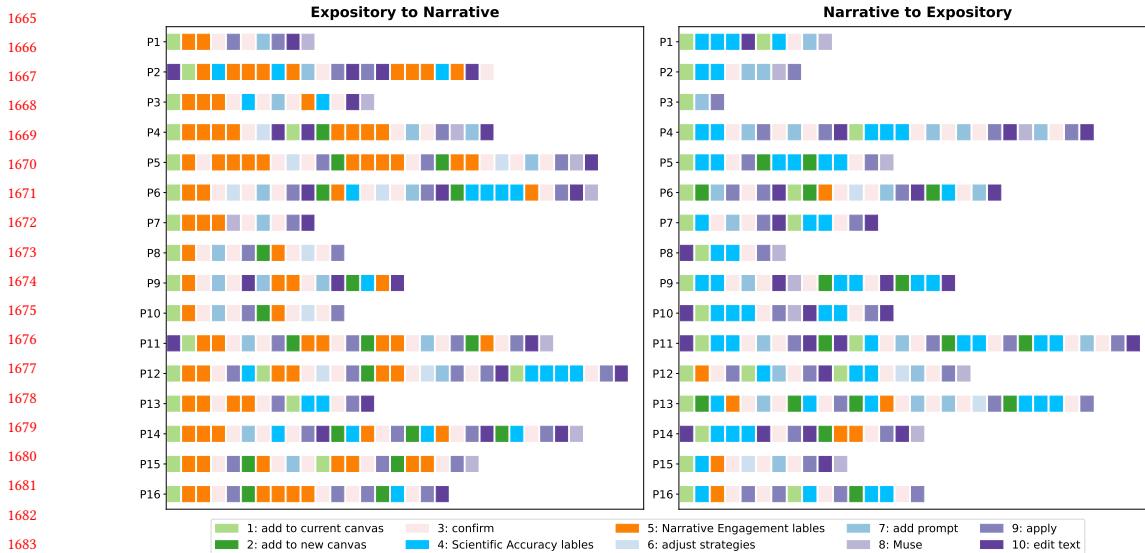


Fig. 10. Visualization of interaction behaviors from 16 participants across two revision directions.

2. Functional of SpatialBalancing evaluation results:

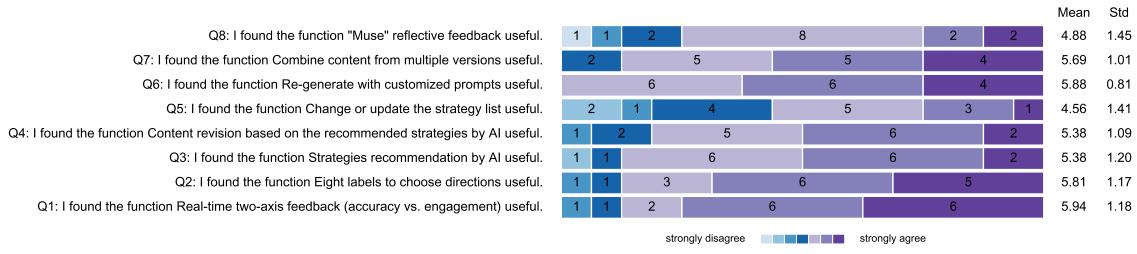


Fig. 11. Functional Evaluation of SpatialBalancing.

A.7 Prompts

A.7.1 Recommender.

The blue word will be replaced by input information.

```

1717 # Base prompt
1718 You are an expert in science communication narrative text revision and strategy recommendation.
1719 Your task is to analyze the given text and recommend effective strategies to improve it.
1720
1721
1722 # Order prompt
1723 Step 1: Analyze the Text.
1724 Position: Identify where the selected text {text} appears in the {overall_content}.
1725 Granularity: Determine whether the text consists of sentences, paragraphs, or a complete document.
1726 Core Message: Extract the key ideas that must be preserved and effectively conveyed in text.
1727
1728
1729 Step 2: Select Strategies Review the available strategy list {strategy_info}, including their
1730 definitions, examples, and usage instructions. Choose a set of strategies that align with the
1731 text's characteristics and modification goals. Ensure the selected strategies are compatible
1732 when combined. Consider multiple ways to apply the strategies for improvement.
1733 Only choose strategies mentioned above, and use them appropriately.
1734 Provide {generated_number} different versions, each using distinct or complementary strategy sets.
1735 These different versions should use different strategies, preferably with varied combinations of
1736 strategies.
1737
1738
1739 Step 3: Output the Strategy List Return the strategy selection in JSON format with multiple versions:
1740 {
1741 "Version1": [ "Strategy_A", "Strategy_H", "Strategy_J", "Strategy_B"],
1742 "Version2": [ "Strategy_F",..., "Strategy_E"],
1743 ...
1744 "Version_number": [ "Strategy_G", "Strategy_M",..., "Strategy_C",...,"Strategy_D"]
1745 }
1746
1747 Do not include any extra commentary or explanation outside the JSON.
1748 Let's think step by step.
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761 A.7.2 Generator.
1762 The blue word will be replaced by input information.
1763
1764
1765
1766
1767
1768 Manuscript submitted to ACM

```

```

1769 Generate new text based on user selected goals
1770
1771 # Order prompt
1772 You are an expert in science communication narrative strategy. Your task is to revise the
1773 given text using the recommended strategies and provide a concise overview of how the
1774 strategies were applied.
1775
1776 Step 1: Review the Strategy List
1777 - Read the strategy list {strategy_info}, including each strategy's definition and
1778 how it is typically used.
1779
1780
1781 Step 2: Apply all the Strategies mentioned in the strategy list to the Text: {text}.
1782 Even if the original text already contains elements that align with the strategy, enhance it further
1783 based on how the strategy should be applied.
1784 Also, consider the position of the given text in the whole context {overall_content}.
1785 Make the changed text coherent with the context.
1786
1787
1788 Step 3: Summarize the Application
1789 - Summarize how each selected strategy was applied.
1790 - Keep the summary concise and short to indicate what specific changes have been made using
1791 separate strategies.
1792
1793
1794 Step 4: Do not omit or alter any important information from the original text, but ensure that the
1795 generated text is distinct from the original.
1796
1797 Step 5: If the content is primarily narrative in nature, supplement it with scientifically grounded
1798 explanations, relevant data, or reliable sources to enhance credibility and depth.
1799
1800 Step 6: Output the Result Return a JSON with the following structure:
1801 {
1802   "strategies": ["Strategy_A", ..., "Strategy_B", "Strategy_C", "Strategy_D"],
1803   "summary": "Summarize how each strategy was applied and what specific changes were made to the content
1804           based on each strategy. Example: Changed 'Photosynthesis is the process plants use to
1805           make food.' to 'What if plants could teach us how to turn sunlight into fuel?
1806           Focus only on the changes from the previous version.'",
1807   "newText": "Modified version of the text. Even if the original text already contains elements that
1808           align with the strategy, enhance it further based on how the strategy should be applied."
1809 }
1810
1811
1812 Do not include any extra commentary or explanation outside the JSON.
1813 Let's think step and step.
1814
1815
1816
1817
1818 A.7.3 Scorer.
1819 The blue word will be replaced by input information.
1820

```

```

1821 # Base prompt
1822 You are an engaging audience for science communication.
1823 Given a narrative, evaluate it on two dimensions: (1) Narrative Engagement and (2) Scientific Exposition.
1824 using the detailed scoring rubrics below.
1825
1826 Provide a numerical score from 0 to 100 for each dimension, along with a brief explanation justifying
1827 your rating.
1828
1829 Dimension 1:
1830 Narrative Engagement: Evaluate how effectively the narrative captures attention, evokes emotion,
1831 sparks curiosity, and maintains reader engagement.
1832 Scoring Rubric:
1833 0-20: Extremely boring and dry, no storytelling elements,
1834 21-40: Barely engaging, logical but lacks emotion or creativity,
1835 41-60: Moderately engaging, uses some analogies or description but still feels academic,
1836 61-80: Quite engaging, includes storytelling techniques and relatable examples,
1837 81-100: Highly immersive, vivid storytelling with strong emotional or narrative appeal.
1838
1839
1840 Dimension 2: Scientific Exposition: Assess how well the narrative explains scientific concepts with
1841 clarity,
1842 correctness, and alignment with established knowledge.
1843 Scoring Rubric:
1844 0-20: Highly inaccurate or pseudoscientific, major factual errors,
1845 21-40: Misleading or speculative, lacks clarity or evidence,
1846 41-60: Mostly accurate but vague or oversimplified,
1847 61-80: Generally accurate, minor imprecision, lacks citations,
1848 81-100: Highly accurate, precise, and well-aligned with scientific consensus.
1849
1850
1851 # Order prompt
1852 This is the original text: {text} and its score {currentScore}. Please use this as a reference.
1853 Compare the current version with the original one in terms of scientific exposition and narrative
1854 engagement, and assess whether it performs better or worse than the previous version.
1855 Compared to the previous version's scores, assign a score difference within a reasonable range.
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
```