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Spatial Balancing: Harnessing Spatial Reasoning to Balance Scientific Exposition
and Narrative Engagement in LLM-assisted Science Communication Writing

ANONYMOUS AUTHOR(S)

Fig. 1. Example Workflow of using SpatialBalancing for iterative science communication writing. A – Jenny drags her draft into the
canvas, where each paragraph becomes a node mapped by Scientific Exposition (Y-axis) and Narrative Engagement (X-axis). B – She
selects revision labels such as Enhance Understanding or Captivate & Immerse, each tied to LLM-driven strategies that generate
new versions placed accordingly. C – Jenny reviews and confirms preferred revisions, which turn purple for further refinement. D –
She can combine two versions into a synthesized draft, balancing credibility and engagement. E – Further revisions are guided by
strategies or custom prompts, enabling precise, iterative control. F – Finally, SpatialBalancing’s Muse assistant reflects on her revision
history and offers adaptive suggestions.

Balancing scientific exposition and narrative engagement is a central challenge in science communication. To examine how to achieve
balance, we conducted a formative study with four science communicators and a literature review of science communication practices,
focusing on their workflows and strategies. These insights revealed how creators iteratively shift between exposition and engagement
but often lack structured support. Building on this, we developed SpatialBalancing, a co-writing system that connects human spatial
reasoning with the linguistic intelligence of large language models. The system visualizes revision trade-offs in a dual-axis space, where
users select strategy-based labels to generate, compare, and refine versions during the revision process. This spatial externalization
transforms revision into spatial navigation, enabling intentional iterations that balance scientific rigor with narrative appeal. In a
within-subjects study (N=16), SpatialBalancing enhanced metacognitive reflection, flexibility, and creative exploration, demonstrating
how coupling spatial reasoning with linguistic generation fosters monitoring in iterative science communication writing.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the owner/author(s).
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1 Introduction

With the recent progress in modeling human language, generative systems have increasingly been applied to diverse
writing tasks, ranging from news reporting to creative storytelling [54]. Compared with other forms of writing, science
communication is distinctive in that it requires a careful balance between scientific exposition and narrative engagement,
a balance that directly influences how the public understands and trusts scientific knowledge [7, 16, 29, 78].

Online platforms have democratized science content creation across YouTube, social media, blogs, Q&A sites,
and podcasts [67, 92, 99], making the balance between scientific exposition and narrative engagement increasingly
complex. While improving accessibility, this trend creates a significant challenge: untrained creators produce highly
variable content quality [76], highlighting the need for better guidance frameworks to support high-quality science
communication. To address this challenge, recent HCI research has leveraged the linguistic intelligent of large language
models (LLMs) to support science communication writing, capitalizing on their ability to synthesize complex information,
switch flexibly between tones, and produce stylistic alternatives [11]. These systems focus on content planning [72, 80],
rhetorical enhancement [34, 35, 49], and iterative revision [58, 98]. However, existing tools predominantly adopt a
prompt–response paradigm, offering surface-level language variation while focusing on either structural planning [80]
or localized iterations [36, 49]. They lack integration between local edits and broader narrative design, and provide
no structured representations showing how revisions influence the trade-off between exposition and engagement,
constraining users’ capacity to intentionally guide this process [98].

These limitations point to a broader question: as generative systems increasingly approximate or surpass human
linguistic capabilities, effective human–AI collaboration may need to draw on distinctively human cognitive capacities,
such as spatial reasoning. Spatial reasoning, defined as the ability to comprehend, manipulate, infer, and anticipate
spatial relationships and structures [56], enables holistic navigation of complex configurations. HCI research has
leveraged spatial representations for human–AI collaboration through node-link diagrams [49, 61, 100] and selection
paradigms [58, 59] to enhance interpretability and controllability. However, these approaches remain limited to structural
visualization and option manipulation, lacking mechanisms for dynamically sustaining the balance between scientific
exposition and narrative engagement—an inherently ongoing, multidimensional trade-off [25, 38, 62]. This balancing
process resembles spatial navigation, where writers must continually evaluate their position relative to communicative
goals and make directional adjustments [95, 98], underscoring the need for spatial-reasoning-based interfaces that
better support communicators in navigating this balance.

Building on this foundational spatial reasoning capacity of human and LLM’s linguistic intelligence, we propose
Spatial Balancing: an interaction paradigm that leverages human spatial reasoning to guide the dynamic negotiation
between scientific exposition and narrative engagement in science communication. Communicators use spatial reasoning
to steer and regulate the dynamic negotiation between scientific exposition and narrative engagement, while LLMs
provide the linguistic material that fills this rhetorical space [14]. We instantiate this concept in SpatialBalancing, a
Manuscript submitted to ACM
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Spatial Balancing 3

proof-of-concept system (Figure 1) that visualizes communicative iterations with LLM in a two-dimensional coordinate
space, where the x-axis represents narrative engagement and the y-axis represents scientific exposition. Each iteration
is plotted as a point, thereby providing communicators with continuous visual feedback to assess how revisions shift
across the two dimensions. Such spatial externalization reframes revision as a process of navigating a rhetorical space,
shifting the activity from reactive modification toward more intentional exploration. This idea further aligns with
recent work on LLM-assisted ideation that employs spatial representations to scaffold scientific ideation [23].

To systematically investigate this approach, we pose three research questions:

• RQ1 - SystemDesign:How can spatial reasoning be applied to support writers in balancing scientific exposition
and narrative engagement in science communication?

• RQ2 - Cognition: What impact does spatial visualization of revision tradeoffs have on writers’ cognitive
process?

• RQ3 - System Feature:How do different interface features (2D coordination, strategy labels, reflective feedback)
contribute to improving writing quality and user experience in science communication?

In a within-subjects study with 16 science communicators, SpatialBalancing demonstrated measurable advantages
over a strong LLM baseline. It supported greater strategic flexibility, creative exploration, and metacognitive reflection.
Participants reported that the coordinate visualization externalized abstract goals, facilitated real-time self-monitoring,
and enhanced their confidence in editorial decisions. By making the trade-offs between scientific exposition and
narrative engagement more tangible, the system enabled more deliberate decision-making and iterative exploration.

Our contributions include:

• The concept of Spatial Balancing as a novel interaction paradigm for science communication writing, along
with design implications that translate spatial reasoning into actionable writing support with LLM.

• A proof-of-concept system that instantiates this framework through spatial reasoning, enabling visual explo-
ration of revision trade-offs.

• Empirical evidence from a within-subjects study with 16 science communicators showing that our proof-of-
concept system improves metacognitive regulation, creative exploration, and writer confidence relative to a
state-of-the-art LLM baseline.

2 Related Work

2.1 Balancing Exposition and Narrative Engagement in Science Communication Writing

In the Information Age, online science communication has become increasingly dominant, especially in the popular
science field [9, 63]. Science communication refers to the strategic use of various forms of communication, such as media,
events, and interactions, to convey scientific information to diverse audiences in a way that aims to increase awareness,
enjoyment, interest, opinion-forming, and understanding [7, 46, 66]. The popular science movement (also known as pop
science or popsci) aims to interpret and present scientific concepts in an accessible way for a general audience, placing
greater emphasis on entertainment and broadening its scope compared to traditional science journalism [5, 19, 93]. As
online communication technologies have become more accessible, various formats have emerged to deliver popular
science content, including books, documentaries, web articles, and online videos [29, 93, 99].

A fundamental challenge in science communication writing lies in balancing two often competing dimensions:
scientific exposition and narrative engagement [25, 38, 62]. Burns et al. [7] made a vivid analogy, describing science
communication writing as a form of "mountain climbing," balancing between scientific literacy and science culture.
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4 Anon.

Similarly, Dahlstrom [16] emphasized that science communication writing inherently involves both narrative and
expository elements. In this study, we use the terms "scientific exposition" and "narrative engagement" to describe this
tradeoff [24], because these terms more directly capture the practical tension between maintaining rigorous, detailed
scientific presentation and creating compelling, accessible content for diverse audiences [24, 62]. The tension between
these dimensions stems from their fundamentally different linguistic requirements. Engaging content relies on narrative
techniques—storytelling, analogy, and suspense—to capture attention [16, 29, 38], while scientifically accurate content
demands rigorous expository writing that prioritizes scientific detail and credibility [48, 51].

To address this inherent tension, writers typically navigate between these two dimensions using iterative linguistic
strategies [29, 33, 64, 69], transforming revision into a non-linear, multi-pass process. Existing scholarship has developed
strategies that focus on either narrative engagement or scientific precision [3, 52]. For enhancing narrative engagement,
research has identified three primary approaches. First, writers create memorable points by distilling complex ideas
into condensed, succinct expressions [29, 64]. Second, they evoke emotions by strategically incorporating elements of
hope, fear, or sadness [32, 33, 42, 91]. Third, they spark curiosity through thought-provoking questions that encourage
reader reflection [77, 99]. In contrast, strategies for maintaining scientific precision emphasize rigorous expository
writing that prioritizes comprehensive detail and establishes credibility [48, 51, 69]. Through iteratively revising and
evaluating drafts, writers achieve overall balance by strategically emphasizing engagement in some sections while
prioritizing scientific exposition in others to ensure clear explanation throughout the piece [3, 43].

Most critically, science communication authors revise without timely, reader-centered feedback on how their
text balances exposition and engagement [95, 98, 99]. This evaluation gap obscures whether a change represents an
improvement or regression, pushing writers toward conservative edits and stifling exploration [3, 65]. Without reliable,
localized signals, they must navigate implicit trade-offs that remain difficult to surface and track, creating subsequent
challenges in judging whether revisions enhance the balance and generating reluctance to pursue alternatives due to
fear of losing progress [98].

Existing approaches exacerbate the problem. Theory-heavy guidance provides minimal procedural support for
iterative revision that balances scientific exposition with narrative engagement [25, 38, 62]. Consequently, there is a
critical need for integrated, revision-oriented support that makes both dimensions visible across multiple scales, delivers
real-time audience-informed feedback, and enables multi-version exploration through non-linear history with granular
controls.

2.2 Spatial Reasoning for Steering Linguistic Intelligence of Language Models

Human cognition embodies two complementary strengths: linguistic intelligence, the capacity to generate, interpret, and
manipulate complex symbolic expressions, and spatial reasoning, which supports envisioning relationships, operating
on conceptual structures, and weighing trade-offs across multiple goals in multi-dimensional space. With recent
advances, large language models (LLMs) have demonstrated remarkable linguistic intelligence—synthesizing complex
information, flexibly shifting between tones, and producing stylistic alternatives that rival or even surpass human
fluency [11, 36, 37, 49, 80]. While large language models (LLMs) have increasingly matched or even surpassed human
capabilities in linguistic fluency, humans still hold a clear advantage in spatial reasoning over both language and
multimodal models. Human spatial reasoning encompasses the ability to mentally manipulate objects, navigate complex
environments, and critically—visualize abstract relationships [50, 88]. These capabilities, particularly the capacity to use
spatial metaphors for non-spatial concepts and optimize within multi-constraint spaces, remain challenging for current
AI systems despite their linguistic sophistication [22, 23]. This asymmetry motivates the design of mixed-initiative
Manuscript submitted to ACM
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Spatial Balancing 5

systems that combine human spatial reasoning with the linguistic intelligence of LLMs [21] to support complex cognitive
tasks that require both sophisticated language generation and multi-dimensional reasoning, such as scientific writing
that balances accuracy with accessibility across diverse audiences.

One notable form of spatial reasoning is direct manipulation of LLM output [81]: continuous feedback, rapid,
reversible adjustments make complex intents expressible beyond text prompts alone. Systems such as ForceSPIRE [28]
and Drag-and-Track [68] harness spatial operations to steer semantic analysis and data processing, bridging tacit goals
and algorithmic execution. In LLM contexts, node-link diagrams [22] support GenAI-assisted hypothesis exploration,
while real-time pipeline steering systems such asWaitGPT [96] enable fine-grained control over LLMworkflows through
spatial interactions. While direct manipulation interfaces are effective for illustrating step-by-step LLM processes, such
sequential layouts quickly become cluttered as task complexity increases, limiting their ability to capture higher-level
rhetorical trade-offs. To address this, researchers have turned to graph and tree-based views—such as Sensecape [84],
Luminate [83], and Graphologue [45], which reveal relationships among generative elements via node–edge structures
and support hierarchical exploration with LLM text output. Yet these systems largely prioritize inspection over in-situ
steering of trade-offs.

As generative systems have demonstrated stronger linguistic capabilities, researchers have begun developing mixed-
initiative visualization systems that combine human spatial reasoning with the linguistic intelligence of LLMs for
collaborative text creation. For instance, sketch-driven storytelling interfaces allow users to spatially outline narrative
trajectories, which are then expanded by language models into full-fledged text, thereby translating between spatial
reasoning and linguistic generation [13]. Likewise, PatchView’s "dust-and-magnet" metaphor enables users to rapidly
cluster and combine narrative fragments through spatial manipulation [14], while Toyteller [15] transforms story
fragments into interactive "toys" that encourage expressive ideation.

While these spatial approaches to human-AI collaboration have shown promise in creative domains and general
text manipulation, their application to the specialized demands of science communication writing remains largely
unexplored. Unlike creative domains, where LLM outputs are not bound by strict requirements and primarily seek new
insights, science communication writing imposes stricter constraints, such as maintaining a linguistic balance between
scientific exposition and narrative engagement [7, 16, 29, 78]. This gap represents a significant opportunity, as science
communication writing inherently lends itself to spatial reasoning—writers naturally conceptualize their work through
spatial metaphors such as "moving toward" accessibility, finding the "sweet spot" between detail and clarity [17], or
"navigating" competing audience needs [98]. This research gap motivates us to design a 2D visualization interface that
combines human spatial reasoning capabilities with LLM linguistic intelligence to support the iterative revision process
of balancing scientific exposition and narrative engagement.

3 System Design

Based on our literature review, narrative engagement and scientific exposition are two critical dimensions that require
careful consideration and when creating science communication narratives [25, 38, 62]. Writers must navigate an
iterative, non-linear revision process as they continuously shuttle between these competing demands, often finding
that improvements in one dimension can inadvertently compromise the other [29, 33, 69]. This creates a persistent
struggle where writers lack systematic guidance for simultaneously optimizing both dimensions during their multi-pass
revision workflow, leading to inefficient trial-and-error approaches that may favor one dimension at the expense of
scientific exposition or reader engagement [64]. To understand how these two aspects are considered and how a balance
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6 Anon.

is achieved in authentic creative processes, we conducted further expert interviews (Section 3.1) and a literature review
(Section 3.3) to establish a more instructive guideline.

3.1 Formative Study

To better understand the workflows, goals, and tool needs of science communicators, we conducted in-depth interviews
with four professionals: a TikTok science animator (20K+ followers), a YouTuber (10K+ subscribers), a science columnist
on a Q&A platform (200K+ followers), and an educational video producer. Each interview lasted approximately 90
minutes and focused on three areas: (1) their typical content creation workflow, (2) how they balance communicative
goals, and (3) how they use LLM tools in practice. The qualitative findings are as follows:

(1) The Core Challenge: Balancing Scientific Exposition and Narrative Engagement. Participants described
two common workflows in science communication. The knowledge-to-stories approach, favored by those creating
platform-independent or long-form content, begins with scientific concepts and adds narrative elements (e.g., examples,
metaphors, stories) to enhance engagement. In contrast, the news-to-theories workflow—more typical of real-time or
event-driven content—starts with current events or relatable experiences and layers in relevant scientific explanations.
Despite differing starting points, all participants emphasized the same challenge: sustaining both scientific rigor and
audience interest. One author noted, “If it’s too technical, people stop watching. If it’s too entertaining, they call it
shallow.” Across formats, authors stressed the need to balance clarity, credibility, and emotional connection.

(2) Narrative Strategies Are Essential but Lack Structured Support. To make their writing more engaging,
participants reported deliberately applying narrative strategies, such as metaphors, real-world analogies, quotations,
and personal anecdotes, to enhance the appeal of their content. One author revised content by adding narrative “hooks”
after drafting the science explanation; another explicitly mapped theories to familiar experiences. The science columnist
also said she relied on LLMs to quickly associate trending news with relevant theories. However, these four experts
also noted that these decisions were largely intuitive due to their extensive editing and revision of texts and lacked
structured support. They mentioned that it would be better to have a holistic narrative framework to guide the revision
process. Additionally, they expressed a desire for clearer feedback on how well their narrative choices aligned with real
audience feedback.

(3) LLMs Enable Exploration but Require Human Filtering for Precision. All four participants had experi-
mented with LLMs to support writing, primarily for idea generation, tone adjustment, and connecting scientific ideas
to familiar concepts. For example, the educator used LLMs to make explanations “more relaxed and child-friendly,”
while the columnist relied on them to quickly associate trending news with relevant theories. The YouTuber, who
typically starts with expository theories, used LLMs to generate more examples and metaphors and edit based on the
output to aid audience understanding. All four of them mentioned that co-creating with LLMs enabled them to revise
content more quickly. They also noted that LLMs provided more examples and diverse perspectives to enhance the
content’s engagement and understanding, or to strengthen its scientific rigor and support. For example, the science
columnist noted that she typically asks the LLM to surface a wide range of relevant theories, then filters through these
options herself, and once one is selected, she carries out more fine-grained refinements. This illustrates how LLMs
contribute linguistic intelligence by supporting both flexible exploration by surfacing diverse theoretical possibilities
and fine-grained modification of specific content once a direction is chosen.

(4) Iterative RevisionRelies on IntuitionDue to Lack of Timely Feedback. Participants consistently emphasized
that science communication writing is a highly iterative and non-linear process. They often went through multiple
rounds of revision: starting with a draft focused on scientific explanation, then adding narrative elements, and finally
Manuscript submitted to ACM



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Spatial Balancing 7

refining language and visual expression. Each round could strengthen one dimension while weakening another. For
instance, a YouTuber noted that after polishing the scientific argument, the storytelling often felt less engaging, requiring
the addition of analogies or examples; yet when more narrative elements were included, there was concern that the
content might lose academic rigor. These revisions were guided largely by intuition rather than systematic criteria.
Audience feedback (e.g., views, likes, comments) was delayed, indirect, and rarely pinpointed which changes improved
clarity or engagement. As the TikTok science animator noted, “You only know if it worked after publishing—and by
then, it’s too late.” This lack of timely, fine-grained feedback left creators relying on trial-and-error, making it difficult
to efficiently balance narrative appeal with scientific rigor.

In sum, science communicators need assitant to help them balance rigor and engagement, apply narrative strategies
systematically, harness LLMs for exploration and refinement, and receive timely feedback. Addressing these needs
would enable more efficient, intentional revision processes.

3.2 Design Goals

Drawing from the findings of the existing literature on science communication, as well as pilot testing on initial
prototype and expert interview, we have established the following design goals:

DesignGoal 1: Use Spatial Balancing to Visualize Trade-offs between Exposition andNarrative Engagement
in Science Communication Writing. Prior work highlights the need to balance accurate exposition with engaging
storytelling in science communication [25, 38, 62], and our formative interviews (Section 3.1) confirm that authors
struggle to manage this tension. Writers often face implicit trade-offs—risking drafts that lean too heavily toward
exposition or narrative—yet these shifts are difficult to track at the local level. To address this, the system should
make both dimensions visible, helping authors evaluate relative levels of exposition and engagement without cognitive
overload.

Design Goal 2: Guide Revisions with Strategy Scaffolds. Prior literature documents many techniques to address
distinct communication objectives (see Section 3.3). Yet, LLM usage often requires authors to manually break down tasks
and design prompts, which can be demanding [82].The system should therefore scaffold trategies—offering prompts,
labels, etc. that help authors systematically select and apply approaches best suited to their communication goals. This
reduces the burden of recalling strategies and allows for more deliberate, goal-oriented writing process.

Design Goal 3: Enable Flexible Exploration and Granular Controls Through Multi-Version Revision. Prior
work [3, 65, 95, 98, 99] and our formative interviews show that in iterative revision, science communicator often relies
on LLMs to explore multiple possibilities in pursuit of a specific goal, and then to perform fine-grained modifications
within the selected direction. Yet effective writing frequently arises from exploring multiple possibilities through
iterative drafting and deep refinement of specifci version [26]. Thus, the system should therefore support multi-version
revision with non-linear history tracking and granular editing controls, enabling authors to revisit, merge, or revert
drafts flexibly.

Design Goal 4: Embed Reflection Within Iterations to Support Self-Monitoring. Effective science com-
munication with LLMs requires not only generating content but also iteratively revising and evaluating drafts with
feedback [49]. Our formative study further underscored that authors receive little timely, fine-grained feedback during
revision, leaving them to rely largely on intuition. To address this gap, the system should integrate lightweight reflection
cues (e.g., visual indicators or checkpoints) into the workflow, prompting authors to pause, assess, and recalibrate.
These signals help writers stay aligned with their goals and maintain control of the revision process.
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8 Anon.

Table 1. Labels of Science Communication Writing Strategies.

Scientific Exposition

Label 1 Label 2 Label 3 Label 4
Articulate Precisely Elaborate Thoroughly Verify Knowledge Maintain Logical Consistency
Communicates scientific concepts
with exposition and clarity, using
appropriate terminology and well-
defined language to prevent ambi-
guity or misinterpretation [44, 48,
64].

Provides sufficient detail or com-
prehensive theoretical discussion
by unpacking underlying mecha-
nisms, explaining implications, and
citing evidence to elaborate on the
knowledge point while avoiding
bias [52, 69].

Supports claims with credible
sources, data, or reasoning, al-
lowing audiences to feel more
trustworthy of the given informa-
tion [52, 73].

Ensures that arguments and expla-
nations are coherent and internally
consistent, following a clear logical
structure [89].

Strategies:
(4) Acknowledge Uncertainties,
(5) Consistent Terminology,
(18) Simplify and abstract lan-
guage,
(19) Clarify Key Terms,
(21) Repeat key point(s) or ques-
tion(s),
(22) Emphasize with Numbers

Strategies:
(3) Step-by-Step Explanation,
(4) Acknowledge Uncertainties,
(7) Everyday Events to Scientific
Insights,
(22) Emphasize with Numbers,
(25) Tie Science to Current Events

Strategies:
(2) Rigorous Source Verification,
(6) Citations & Quotes,
(7) Everyday Events to Scientific
Insights,
(22) Emphasize with Numbers,
(7) Everyday Events to Scientific
Insights Events

Strategies:
(1) Layered Transitions,
(3) Step-by-Step Explanation,
(20) Key Point Recap,
(23) Strengthen the Connections
Between Content

Narrative Engagement

Label 5 Label 6 Label 7 Label 8
Captivate & Immerse Enhance Understanding Inspire Curiosity Evoke Emotion
Engages the audience’s attention
and draws them into the narra-
tive or content flow by adding sto-
ries [38, 57] or using intriguing lan-
guage [29, 64].

Help audiences to grasp com-
plex scientific ideas using rational,
structural content or vivid analo-
gies, visualizations [29, 38, 43].

Stimulates the audience’s desire to
learn more and have motivation to
further explore by applying differ-
ent forms of questions [53].

Creates an emotional response,
positive or negative, and makes the
audience feel connected to the con-
tent, even immerse themselves in
the described scenario [38, 74].

Strategies:
(8) Question-Answer Hook,
(9) Reflection Question,
(10) Suspense-Driven Reveal,
(11) Use metaphors,
(12) Inject humor,
(13) Add real-world supporting ex-
amples,
(14) Add stories,
(15) Add an imagery description,
(16) Create negative emphasis for
focused attention,
(17) Make positive emotion to ex-
pand action repertoire

Strategies:
(11) Use metaphors,
(13) Add real-world supporting ex-
amples,
(14) Add stories,
(15) Add an imagery description,
(21) Repeat key point(s) or ques-
tion(s),
(23) Strengthen the Connections
Between Content,
(24) Present Balanced Views,
(25) Tie Science to Current Events

Strategies:
(8) Question-Answer Hook,
(9) Reflection Question,
(10) Suspense-Driven Reveal

Strategies:
(9) Reflection Question,
(12) Inject humor,
(14) Add stories,
(16) Create negative emphasis for
focused attention,
(17) Make positive emotion to ex-
pand action repertoire,
(21) Repeat key point(s) or ques-
tion(s)

Note. Specific information about each strategy (e.g., definitions, examples) is presented in Table 4.

3.3 Strategies for Science Communication Narrative Design

Based on the results from the pilot interviews, we conducted a literature review in related fields, specifically in
communication studies, education, psychology, linguistics and writing, and HCI, to identify writing strategies that can
enhance narrative engagement and scientific exposition. We searched keywords "science communication" OR "scientific
writing" OR "popular science" AND "strategy" OR "strategies" OR "method" in Google Scholar, the ACM Digital Library,
and the IEEE Xplore Digital Library. After screening the abstract and full paper, we selected 47 papers, across Education
(N=5), Psychology (N=7), Communication Studies (N=27), Linguistics and Writing (N=4), and HCI (N=6). We identified
a total of 25 strategies from these selected papers. By using open coding [41] and design space analysis [10] methods,
two authors developed and organized a design space (Table 4).
Manuscript submitted to ACM
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Fig. 2. (1) SpatialBalancing support parallel prototyping with diverse directions of LLM output; Authors can use customized edits
like change specifc strategy and combine different LLM output to generate new nodes. The 2D coordinate space also allow author
to see their iteration trajectory. (2) SpatialBalancing canvas supports three zoom levels: dots for version overview (0–30%), change
summaries with labels and strategies (40–70%), and full content with highlights of edits (80–100%).

In this design space, we categorized the 25 identified strategies into three groups: those that enhance narrative
engagement (N=10), those that enhance scientific exposition (N=7), and those that enhance both (N=8). Then, we
conducted a Focus Group Discussion (FGD) [71] with the four experts. Together, we refined our initial strategy design
space by clarifying the definition and use of each strategy, and classified the communication strategies by their functions.
This process yielded four labels each for scientific exposition and narrative engagement. Some strategies, due to their
multifunctionality, were assigned to multiple labels, forming the final design space (Table 1).

The defined strategies and their usage will serve as a prompts library for LLMs to support strategy selection and
modification, while the corresponding examples will be applied in few-shot learning (Section 3.5.1).

3.4 Interface Design

3.4.1 SpatialBalancing Overview. SpatialBalancing comprises a left-hand text editor and a right-hand exploratory
canvas (Figure 3). Authors can send any span—sentence, paragraph, or full draft—to the canvas for iterative revision.
Each version is plotted in a 2D space (x: Narrative Engagement; y: Scientific Exposition); gray points denote exploratory
drafts and purple points mark confirmed selections, which can be further refined via labels or custom edits. This spatial
view makes revision states and decision points explicit, helping authors balance exposition and engagement.

The canvas supports branch-based exploration with three zoom levels (Figure 2). Dropped text becomes a root node;
applying labels or custom instructions spawns child nodes, forming a tree that traces exploration paths. At 0–30% zoom,
points provide an overview; at 40–70%, summaries show per-version changes and chosen strategies; at 80–100%, full
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text with diffs against the original is displayed. This progressive disclosure enables rapid comparison and reflective
choice among alternatives.

Real-time Two-Axis Feedback (DG1 & DG4). Based on insights from metacognitive research, authors benefit from
explicit feedback that reduces the cognitive burden of juggling multiple objectives (DG1) and allows self-monitoring of
revision progress and alignment with writing intention (DG4). In SpatialBalancing, each version of the text is plotted as
a point in a two-dimensional space, with one axis representing narrative engagement and the other scientific exposition.
A “Scorer Agent,” trained on audience ratings, assigns scores whenever authors drag a new piece of text into the canvas
to create a node or perform additional edits that generate additional nodes. These scores determine the position of each
node on the coordinate axes. By projecting revisions into a two-dimensional semantic space, the system externalizes
abstract trade-offs into spatial patterns, supporting human spatial reasoning to quickly perceive balance. Meanwhile,
the LLM-based Scorer Agent provides the linguistic intelligence to interpret audience-rated dimensions (engagement,
exposition) and translate them into scores.

3.4.2 Strategy Recommendation via Eight Labels (DG1 & DG2). (Figure 4 (1)) To support DG1 (reducing cognitive load)
and DG2 (scaffolding revision), SpatialBalancing provides an eight-label taxonomy that represents core revision goals
(e.g., inspire curiosity, elaborate thoroughly). Derived from expert interviews and literature, four labels target scientific
exposition and four enhance narrative engagement. Users can select labels aligned with their revision intentions, while

Fig. 3. The SpatialBalancing interface has two main sections: a text editor on the left for placing and directly editing source text (B),
and a canvas on the right for revising selected segments (A). In the center, a visualization tracks iteration scores across narrative
engagement and scientific exposition for multiple LLM-generated versions. Once a segment is confirmed for revision, authors assign
labels (C) that guide editing directions and generate revision nodes. Within each node, content can be refined by entering custom
prompts (G), switching strategies (F), or combining strategies from different nodes (H). Edits can be applied (N) to update the original
text and view the full article. Muse (L), in the canvas’s top-right corner, provides an overview of revision history and accepts author
feedback (M), which informs future strategy recommendations. Editing other article sections opens a new canvas; authors can switch
between revision records via the control in the bottom-right corner (O).
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Spatial Balancing 11

the LLM automatically draws on appropriate combinations of strategies to generate corresponding modifications based
on the design space from the literature review as a prompt engineering library (Section 4). This design reduces the
burden of recalling all possible options while guiding authors toward systematic, goal-directed revisions. The eight-label
taxonomy further externalizes diffuse linguistic strategies into discrete, spatially mappable choices: authors use spatial
reasoning to navigate directions, while the LLM Recommender Agent leverages linguistic intelligence to transform
abstract strategies into concrete textual variants.

3.4.3 Fine-Grained Control for Specific Versions (DG3). (Figure 4(2)) To support DG3, authors can refine individual
nodes after exploring different branches. Once a node is confirmed, it turns purple while unconfirmed nodes remain
gray, visually distinguishing revision states. Three fine-tuning operations are available: toggling previously applied
strategies, providing customized prompts (e.g., “try a different metaphor” or “make this more concise”), and merging

Fig. 4. (1) Strategy Recommendation via Eight Labels: SpatialBalancing offers eight revision labels—four enhancing narrative
engagement and four strengthening scientific exposition. Authors can select one or more labels and specify the number of versions to
generate under each; (2) Fine-Grained Control: Generated nodes can be refined by adjusting the applied strategies, merging nodes to
combine labels, or entering custom prompts for tailored edits; (3) “Muse” Reflective Feedback: Muse provides iterative feedback on
strengths, weaknesses, author patterns and goals, and strategy suggestions. Authors can endorse or reject this feedback, enabling the
system to adapt future recommendations to their preferences.
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Fig. 5. SpatialBalancing backend overview. SpatialBalancing consists of two core modules: (1) The Iterative Interaction Module, where
LLM-based agents—Recommender, Generator, Scorer, and Filter—collaboratively produce and evaluate multiple content versions
based on narrative engagement and scientific exposition; and (2) the Reinforcement Module, which captures author feedback and
inference based on interaction history of author behaviors to refine strategy recommendations through the Analyzer agent. This
architecture supports adaptive text revision.

two versions to preserve strong elements from each. Visual branching and color cues engage human spatial reasoning to
organize and differentiate versions, while LLM linguistic intelligence enables precise micro-level adaptations, grounding
spatial manipulations in targeted linguistic outputs.

3.4.4 “Muse” Reflective Feedback (DG3 & DG4). (Figure 4(3)) To support DG3 and DG4, the Muse agent monitors author
behaviors—such as node confirmations, strategy selections, and engagement–exposition choices—and synthesizes them
into structured feedback. This feedback highlights strengths, weaknesses, editing patterns, and strategy suggestions,
offering a clear channel for reflection. Authors can accept or reject suggestions, and their responses are fed back to the
Recommender Agent to refine future recommendations. By integrating spatial activity traces with LLM-based linguistic
analysis, Muse links behavioral patterns to tailored narrative and exposition strategies, enhancing self-awareness and
promoting iterative refinement.

3.5 Backend and Implementation

The backend of SpatialBalancing comprises several LLM-based agents organized into two main modules: a generation
module and a reinforcement module. The overall pipeline is in Figure 5.

3.5.1 Generation Module. This module begins by capturing the author’s context and their selected modification labels.
The system then proceeds into iterative processing handled by the following agents:

Recommender Agent: The recommender agent’s core function is to generate multiple strategy combinations based on
a author-selected label. When a author chooses a label, the agent analyzes the current textual features to identify the
best combination from its associated strategy set (Section 3.3). Prompts are constructed using in-context learning and
chain-of-thought principles based on the strategy design space (Table 4). The agent considers several factors when
Manuscript submitted to ACM
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recommending strategies for each label, including strategy definitions, usage guides, examples, and the original text’s
role within the broader context of the entire text to recommend the most suitable strategies. The final output consists
of multiple strategy combinations, which are then passed to the scorer to filter and select the top-scoring versions that
has higher scientific exposition or narrative engagement score.

Generator Agent: The generator agent create child nodes based on author input instructions. When generating
new content, the generator receives two types of input to form a new node: (1) strategy recommendations from the
Recommender Agent, which are used to guide the generation of revised text that aligns with the author’s chosen
direction (Labels). The generator adopts in-context learning, referencing the recommended strategies’ definitions, usage
guidelines, and examples to perform content modifications based on the previous node (adopted from Section 3.3 ); and
(2) author-specific refinements passed from the front end during regeneration. These refinements may include prompt
adjustments, combining nodes, or deactivating particular strategies.

Scorer Agent: The scorer simulates real-time audience feedback by evaluating each generated version along two axes:
Narrative Engagement (X) and Scientific Exposition (Y).

To support this, we curated a high-quality dataset of 45 science texts from five common science communication
domain, varying in length and narrative style. Each text was revised by a science communication expert and annotated
by 27 non-experts using a rubric developed by three domain experts. The rubric incorporated sub-dimensions of
narrative engagement and scientific exposition (perceived credibility over strict factual correctness of the narrative).
Scores were normalized to a 0–100 scale and used to fine-tune a GPT-4o model via a small-sample learning strategy1.
This enables the scorer agent to give score to resemble human audience across both scientific exposition and narrative
engagement. The scorer agent is powered by this fine-tuned GPT-4o model. Details on dataset construction and model
training are provided in Appendix A.2.

To validate the reliability of the scoring mechanism, we conducted a technical evaluation comparing the accuracy of
fine-tuned and non-fine-tuned scorers in simulating audience ratings. As shown in Table 2, the fine-tuned scorer exhibited
much higher agreement with human ratings (r=0.90/0.91, RMSE≈6–7) than the non-fine-tuned model (r=0.84/0.57,
RMSE=22–31). Detailed evaluation detail is provided in Appendix A.2.

Table 2. Evaluation of the similarity between fine-tuned and original GPT-4o models’ scores and human scores.

Model Pearson Correlation RMSE

Engagement Exposition Engagement Exposition

w/ FT 0.90 0.91 6.48 7.02
w/o FT 0.84 0.57 22.48 30.90

Filter Agent: This agent uses the scorer’s outputs to select the top-𝑘 versions that best meet the author’s expectations.
Filter Agent ensures that the selected outputs not only fulfill the intended modification chosen direction (Labels) and
achieve high scores but also filter out generated failures and low-quality content. This prevents content redundancy
and enhances overall generation quality.

3.5.2 Reinforcement Module. Since author iterations form a tree of nodes enriched with valuable data (selected labels,
prompts, likes /dislikes, and feedback), we developed an analyzer agent to harness both the explicit and implicit
1https://platform.openai.com/docs/guides/fine-tuning?utm_source=chatgpt.com
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signals from these interactions. The analyzer agent captures behavioral data during the iterative process and uses
chain-of-thought prompts to interpret author revision behavior.

Analyzer Agent: The analysis pursues two main goals: (1) identifying common editing patterns, including stylistic
preferences, trade-offs between scientific exposition and narrative engagement, and individual author strengths or
weaknesses; and (2) uncovering alternative or underused strategy directions. These insights are passed to the Muse
component (Section 3.4.4). After the author provides feedback on the LLM’s suggestions through Muse, the Analyzer
Agent incorporates this real-time feedback (e.g., approvals or further edits) and updates the Recommender Agent
accordingly. This process refines subsequent strategy recommendations, ensuring that each iteration aligns more closely
with the author’s preferences and habits. The feedback loop enables the system to adapt continuously to personal
writing habits while balancing narrative engagement and scientific exposition throughout the revision process.

3.5.3 Implementation. SpatialBalancing is implemented as a web application, with a Python-based backend developed
using Flask2 framework and a frontend built using ReactFlow3.

For the AI agents, we employ different LLMs tailored to their functional roles. The recommender, generator, and filter
agents are powered by the GPT-4o-mini model, optimized for fast, high-quality content generation. The analyzer agent,
which requires deeper reasoning to interpret author behavior and editing patterns, is supported by the GPT-o1 model—a
reasoning-oriented LLM. For the scorer agent, it is powered by a fine-tuned GPT-4o model using a small-sample
learning strategy4. The frontend into predefined prompt templates and communicates with the remote LLMs to obtain
results. This modular design allows us to tailor agent behavior based on context while maintaining flexibility in prompt
construction and LLM selection. The detailed use of prompts in the backend can be found in the Appendix A.7.

4 User Study

To further understand the effect of the SpatialBalancing system on users’ experience during the science communication
narrative writing process—particularly its impact on users’ cognition and human-AI collaboration behavior patterns,
we conducted a within-subjects user study involving 16 participants with prior experience in science communication.
All participants were recruited from a local university. Each participant completed four text editing tasks: two using the
SpatialBalancing system and two using a baseline system.

The baseline system used in this study was an interface consisting of a text editor and a conversational agent
(powered by GPT-4o) that supported inline editing and suggestions from LLM. In both conditions, participants were
provided with an Excel file containing a comprehensive strategy table. This table included the strategy name, definition,
usage instructions, examples, and corresponding labels. Participants were encouraged to use this table as a reference
and to copy-paste content into the prompt area as needed during the tasks.

4.1 Participants

We recruited 16 participants (9 male, 7 female; aged: 24-31 (M = 26.9, SD = 2.0)), all of whom held postgraduate degrees
or higher. Most were PhD students, postdoctoral researchers, or university faculty members affiliated with a local
university, possessing substantial experience in academic work, teaching, or public science communication.

Our system was not designed solely for expert science communicators but for a broad range of users with science
communication needs, reflecting the growing diversity of science communication content creators in online platform [95,
2https://flask.palletsprojects.com/en/stable/
3https://github.com/wbkd/react-flow/
4https://platform.openai.com/docs/guides/fine-tuning?utm_source=chatgpt.com

Manuscript submitted to ACM

https://flask.palletsprojects.com/en/stable/
https://github.com/wbkd/react-flow/
https://platform.openai.com/docs/guides/fine-tuning?utm_source=chatgpt.com


729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Spatial Balancing 15

98, 99]. Thus, participants varied in experience: 13 had hands-on practice in science communication (e.g., teaching
undergraduates, producing explanatory media, or translating complex ideas), with six holding hybrid professional roles
as creators, producers, journalists, or educators, while three primarily identified as consumers of science communication.
LLM writing tool use also varied, with six using them daily, six weekly, and four occasionally. In terms of confidence,
eight considered themselves strong science writers, while the other eight reported a more neutral stance, suggesting
openness to support in expressing complex concepts for diverse audiences. The demographic information of these
participants are in Appendix A.5.

4.2 Procedure

Each study session began with a live demonstration of the system. Participants were encouraged to explore the interface,
try out features, and ask questions. During this walkthrough, the task objectives were also explained.

Each participant completed four text editing tasks: two using the SpatialBalancing system and two with the baseline.
The texts were selected to represent two common styles of science communication: expository (e.g., “How mRNA
Vaccines Work,” “Criteria for Animal Domestication”) and narrative storytelling (e.g., “Discovery of Archimedes’
Principle,” “Living and Thriving with ADHD”). Participants were asked to imagine two specific scenarios: (1) for the
expository text: “I have a scientific narratives. How can I make it more engaging and interesting for an online science
video?”; (2) for the narrative storytelling text: “I have a story as online science video narratives. How can I link it
with more scientific concepts and add scientific credibility?” The length of each text averaged 297.75 words (SD =
19.64). The complete versions of the source texts used for the editing tasks are provided in Appendix A.3. To ensure
balanced exposure and mitigate order effects or personal topic preferences, we counterbalanced both the system order
(SpatialBalancing vs. baseline) and the text type assigned to each system. Thus, each participant edited one expository
and one narrative text under each system condition.

Throughout the tasks, participants were encouraged to think aloud, verbalizing their thoughts, reasoning, and
feelings as they interacted with the systems. All sessions were screen-recorded, and system interaction logs—such as
button clicks (e.g., label selections, generate, regenerate, prompt input, combine)—were automatically captured for the
SpatialBalancing condition.

4.3 Post-Task Survey and Instruments

After completing both conditions, participants completed a post-task survey with standardized instruments: the System
Usability Scale (SUS) [6], NASA-TLX for workload [40], and the Creative Self-Efficacy Index (CSI) [12], with one item
adapted to: “I think this system supported me in developing ideas or text collaboratively.”

We also developed a concise co-creation survey targeting twometacognitive constructs from cognitive psychology [30,
79]. Metacognitive knowledge assessed awareness of cognitive goals (e.g., “I am aware of my writing goals during the
editing process”). Metacognitive regulation captured planning, monitoring, and evaluation [70] (e.g., “I set specific goals
for the narrative,” “I reflect on editing strategies while using the AI tool,” and “I reviewed the narrative to assess how well
it communicated scientific content”). These items were adapted from the Metacognitive Awareness Inventory [79] and
aligned with recent insights into AI-induced metacognitive demands. To measure perceived control during co-creation,
we included items inspired by Human-AI interaction principles [90], focusing on participants’ influence over outputs
and narrative direction. Perceived autonomy was assessed according to Self-Determination Theory [20], addressing
decision-making freedom, expressive latitude, and resistance to system pressure. The full list of items on metacognition,
control, and autonomy is provided in Appendix A.4.
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All instruments (NASA-TLX, SUS, CSI, and co-creation survey) employed a 7-point Likert scale. After task comple-
tion, each participant joined a 15-minute semi-structured interview designed to capture deeper insights into cognitive
processes, feature usage, perceived system value, and moments of difficulty or breakthrough. These interviews comple-
mented survey responses and enriched our understanding of user experience across both conditions.

5 Results

Our evaluation demonstrates that spatial reasoning serves as a powerful cognitive framework for managing the inherent
tensions in science communication writing, transforming abstract balancing acts into concrete spatial navigation
tasks. By externalizing the two-dimensional tradeoff between scientific exposition and narrative engagement through
coordinate visualization, users developed enhanced spatial awareness of their revision choices, enabling them to treat
writing quality not as a singular metric but as a navigable landscape with distinct directional goals. This spatial approach
fundamentally shifted users’ metacognitive processes, with participants showing significantly improved reflection on
writing strategies (M = 5.50 vs. 4.63, p = .013) and strategic flexibility in adjusting approaches during editing (M = 5.69
vs. 4.56, p = .016) as they learned to "read" their position within the exposition-engagement space.

The spatial representation encouraged iterative exploration and balance-seeking behaviors, with users demonstrating
significantly enhanced creative exploration (M = 5.13 vs. 3.69, p = .004) and increased enjoyment of the writing process
(M = 5.19 vs. 4.13, p = .039) compared to traditional linear revision approaches. Remarkably, these cognitive and
creative gains were achieved without imposing additional mental workload, as NASA-TLX results showed no significant
differences across all six dimensions despite the system’s expanded spatial reasoning capabilities. These findings reveal
how spatial reasoning principles can be leveraged to scaffold complex writing decisions, enabling writers to develop
more sophisticated mental models of quality that support both immediate revision choices and long-term strategic
development.

5.1 RQ1: Spatial Reasoning in Science Communication Writing

5.1.1 2D Coordinate Visualization Facilitates Spatial Balancing for Informed Revision Decisions. The coordinate graph
provides a persistent, actionable reference that maps abstract writing tradeoffs into tangible representation. Each node
represents a version evaluated on two key dimensions: scientific exposition and narrative engagement. Most participants
found the visualization facilitated revision prioritization. As P3 noted, "The coordinate graph is a feature that typical AI
tools lack. It keeps me from getting lost balancing the two dimensions during revisions." Participants used scores to
guide focus: P12 said, "I refer to the scores to decide which dimension I need to improve," while P6 observed, "If the two
dimensions differ too much, it reminds me to pay attention to the other." By externalizing internal writing tradeoffs, the
system facilitated metacognitive regulation through visualization of revision alignment and iteration comparison.

Besides, participants also used the graph to make informed revision decisions. P8 shared, "I can see strengths and
weaknesses by comparing nodes; if scientific exposition drops, I adjust accordingly in the next generation." P10 added,
"With the baseline, I had to judge on my own with no version comparison. Now I check if the engagement score is
higher before reading carefully." The 2D coordinate space not only helps authors anticipate the direction of subsequent
revisions but also enables them to compare and select among multiple versions based on their positions within the
space. As P16 noted, “With multiple nodes, I can intuitively compare positions across dimensions, making differences
clear and direct.” Visual comparisons reinforced editorial confidence. As P3 explained, “Coordinate scores help me align
edits with my standards and visually track progress; seeing engagement scores rise reinforces my decisions. It makes
me feel that I am heading in the right direction.”
Manuscript submitted to ACM
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Fig. 6. Visualization examples of segment revisions from P11, P12, and P14.

In sum, the coordinate graph mapped scientific exposition and narrative engagement into a 2D space, helping authors
compare versions and prioritize revisions. Participants used scores and positions to externalize tradeoffs, improving
focus and efficiency. Visualization reinforced their sense of progress and boosted confidence in revision decisions.

5.1.2 Spatial Visualization Drives Iterative Balance-Seeking. The process of using the coordinate axes to assess current
versions along the two dimensions constructively drove further iterations. As illustrated in Appendix A.6 (Figure 10),
when attempting to add storytelling and narrative elements to expository content, participants initially selected labels
associated with narrative engagement. However, during later iterations, they often returned to labels targeting scientific
exposition in order to restore balance.

This kind of iteration can also be observed in Figure 6. For example, in the case of P14, when she attempted to revise
a text from a narrative storytelling version to one with more scientific expression and explanatory content, she initially
selected the label Captivate & Immerse, along with other engagement-enhancing labels. After fine-tuning the text at
that stage using prompts, she realized the need to further improve scientific exposition. As a result, she selected the
Verify Knowledge label and eventually accepted the final version.

This iterative back-and-forth highlights how spatial balancing supports users in dynamically regulating tradeoffs,
ensuring their revisions move toward a more deliberate and well-aligned balance between exposition and engagement.

5.2 RQ2: Impact on Metacognitive Regulation and Creative Exploration

5.2.1 Enhanced Metacognitive Regulation and User Agency. To evaluate the system’s impact on users’ ability to reason
about and adjust their writing strategies, we measured participants’ reflection and adaptation while using SpatialBal-
ancing to revise two articles from two directions. The results of metacognition, control, and autonomy are shown in
Figure 7. SpatialBalancing received significantly higher ratings than the baseline on two dimensions: Q3- reflecting
on one’s own strategies (M = 5.50 vs. 4.63, p = .013) and Q4- adjusting strategies during the editing process (M = 5.69
vs. 4.56, p = .016). These results suggest that SpatialBalancing supports users in dynamically managing their writing
strategies. For other dimensions, such as identifying areas for improvement, goal setting, and progress monitoring,
SpatialBalancing also showed higher means.
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Baseline

1 1 4 8 2

2 1 6 6 1

4 3 4 5

1 2 4 6 2 1

1 2 3 4 5 1

1 1 2 4 8

9 5 2

1 2 1 8 4

2 2 3 3 3 3

1 1 1 6 4 3

1 3 7 4 1

1 4 3 4 3 1

2 1 3 8 2

Equinox

2 6 6 2

1 1 1 7 5 1

2 6 6 2

1 1 4 6 4

1 3 4 6 2

1 1 5 7 2

1 7 6 2

1 2 1 4 6 2

1 1 3 9 2

1 4 2 9

2 6 4 4

1 2 6 6 1

2 5 4 5

p-value Sig.

Q1: I am aware of my writing goals during the editing process. 0.725 -
Q2: I set specific goals for what I wanted the narrative to achieve. 0.874 -

Q3: I reflect on my writing strategies or editing choices while using the AI writing tool. 0.013
Q4: I am able to adjust my writing strategies during the editing process. 0.016

Q5: I can clearly identify areas of my writing that need improvement when using the AI tool. 0.272 -
Q6: During writing, I regularly checked whether the narrative was staying on track with my intended message. 0.389 -

Q7: After writing, I reviewed the narrative to assess how well it communicated the scientific content. 1.000 -
Q8: I felt in control of the writing process while interacting with the system. 0.438 -

Q9: I was able to override or ignore the system s suggestions when I thought it was necessary. 0.071 -
Q10: I determined the direction and flow of the science narrative, not the system. 0.768 -

Q11: I felt free to make my own choices during the co-writing process with the system. 0.337 -
Q12: The system supported my ability to express my own ideas in the narrative. 0.070 -

Q13: I did not feel pressured to accept the system s suggestions. 0.359 -

strongly disagree strongly agree

Fig. 7. Results of the Metacognition (Q1–Q7), Control (Q8–Q10), and Autonomy (Q11–Q13) questionnaires (p < .05 marked with *; p
< .01 with **). Significant differences were observed in Metacognition: Q3 (M = 5.50 (SpatialBalancing) vs. 4.63 (Baseline), p = .013)
and Q4 (M = 5.69 vs. 4.56, p = .016); marginal differences in Control: Q9 (M = 5.63 vs. 4.75, p = .071) and Autonomy: Q12 (M = 5.25 vs.
4.44, p = .070).

In terms of perceived control and autonomy, participants rated SpatialBalancing slightly higher across all items,
especially in their ability to Q9- override system suggestions (M = 5.63 vs. 4.75, p = .071) and Q12- express their own
ideas (M = 5.25 vs. 4.44, p = .070), although these did not reach significance. These trends indicate that SpatialBalancing
fosters a stronger sense of authorship and agency in the LLM-supported writing process.

These findings indicate that SpatialBalancing enhances users’ capacity for reflection and adaptation while reinforcing
their role as active decision-makers. By supporting strategy calibration and the assertion of personal ideas, the system
cultivates authorship and agency in the LLM-supported writing process.

5.2.2 Enabling Creativity Through Low-Cost, Flexible Exploration. The CSI questionnaire revealed that participants
rated SpatialBalancing significantly higher in "Exploration" (M = 5.13 vs. 3.69 (Baseline), p = .004) and "Enjoyment"
(M = 5.19 vs. 4.13, p = .039), indicating better support for exploring diverse narrative directions and enhanced writing
experience. SpatialBalancing showed higher averages across all CSI items, demonstrating effective idea exploration
without sacrificing usability (Figure 8).

Participants described interactions as playful and exploratory. P11 reflected, "I wanted to see how different strategies
under the same label changed output, so I generated multiple versions. It gave me room to play and test." The system
minimized cognitive overhead, enabling low-stakes, high-feedback interaction that encouraged curiosity.

The system provides flexibility for exploring multiple balancing directions while supporting fine-tuned adjustments
within chosen axes. Unlike the baseline’s linear process, this canvas-based interface facilitates parallel comparison and
ongoing exploration. P6 noted, "These labels give me several options with different focuses simultaneously. I can choose
one version to develop further and still return to earlier iterations after generating new branches." This non-linear
workflow enabled reflective comparison without premature commitment.

The system occasionally catalyzed unexpected creativity. P11 recalled selecting "enhance understanding," which
automatically inserted a metaphor: "That metaphor was so on-point, I hadn’t even thought about that kind of revision
before." Such moments illustrate potential for conceptual innovation beyond users’ initial expectations.

Quantitative findings support this: participants rated SpatialBalancing higher for flexibility to "adjust writing strategies
during editing" (M = 5.69 vs. 4.56, p = .016) (Figure 7 Q4) and exploration support for "diverse ideas and outcomes" (M =
Manuscript submitted to ACM
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Exploration Expressiveness Immersion Enjoyment Results Worth Effort Collaboration
1
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3
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6
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**
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Baseline
Equinox

Fig. 8. The results of CSI questionnaire. (∗: 𝑝 < 0.05 and ∗∗: 𝑝 < 0.01). Participants rated SpatialBalancing significantly higher in
terms of "Exploration" (M = 5.13 (SpatialBalancing) vs. 3.69 (Baseline), p = .004) and "Enjoyment" (M = 5.19 vs. 4.13, p = .039)

5.13 vs. 3.69, p = .004) (Figure 8 Exploration). SpatialBalancing supports creativity by lowering experimentation costs,
broadening revision possibilities, and enabling non-linear idea exploration.

Through playful interaction, flexible branching, and occasional novel rhetorical strategies, it encourages curiosity
while maintaining user control, transforming revision from a constrained, linear task into an open-ended creative
process.

5.2.3 Reflective Feedback through "Muse" Enhances Self-Awareness. Muse helps users recognize revision strengths and
gaps through reflective feedback that mirrors their editorial process. P1 described a moment while revising Archimedes’
principle: "A metaphor suggested by Muse struck me: buoyant force equals displaced water’s weight, like balanced
scale arms. This visual analogy illuminated the concept for me." Such feedback supports both evaluation and awareness
of conceptual gaps.

The feedback prompted internalization of new strategies. P15 noted, "I started using strategies I hadn’t tried before,
and remembered to use them again." Several participants described how feedback reframed their broader writing
approach. P6 said, "I started seeing where I tend to do well or poorly. Muse pointed out strengths I didn’t even realize I
had." P10 explained, "With more guidance during revision, I felt like I was internalizing a way of thinking. Even without
the system, I’d know how to approach future writing."

This aligns with quantitative results showing SpatialBalancing better supports "reflecting on my writing strategies
and choices" (M = 5.5 vs. 4.63 (Baseline), p = .013) (Figure 7 Q3). These results highlight that Muse’s feedback fosters
durable reflective habits that enhance self-awareness, strategic flexibility, and long-term writer development beyond
immediate revisions.

5.3 RQ3: Interface Features’ Contribution to WritingQuality and User Experience

5.3.1 Strategy Labels Enable Structured Exploration without Cognitive Overload. We evaluated cognitive workload and
usability using NASA-TLX and SUS questionnaires (Table 3). NASA-TLX showed no significant differences between
SpatialBalancing and baseline, indicating SpatialBalancing doesn’t impose additional cognitive burden despite expanded
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SpatialBalancing Baseline Statistics
mean std mean std p-value Sig.

N
A
SA

-T
LX

Mental Demand 4.63 1.36 4.19 1.68 .404 —
Physical Demand 3.19 1.60 2.63 0.96 .261 —
Temporal Demand 2.63 1.36 3.19 1.38 .343 —
Effort 3.94 1.39 4.44 1.79 .241 —
Performance 5.13 0.89 4.88 0.96 .372 —
Frustration 2.88 1.59 3.00 1.32 .724 —

SU
S

Q1: use frequently 5.13 1.54 4.38 1.36 .155 —
Q2: unnecessarily complex 3.00 1.41 2.94 0.85 .899 —
Q3: easy to use 4.94 1.69 4.88 1.15 .964 —
Q4: need support 3.94 1.91 2.81 1.87 .031 ∗
Q5: function well integrated 5.13 1.26 3.44 1.36 .003 ∗∗
Q6: inconsistency 3.06 1.39 3.25 1.53 .719 —
Q7: learn to use quickly 4.88 1.59 5.06 1.44 .604 —
Q8: awkward 2.44 1.26 2.50 1.37 .927 —
Q9: confident 4.50 1.32 4.50 1.37 .812 —
Q10: need learning 3.81 1.56 3.38 1.89 .397 —
Overall Score 70.78 29.70 68.44 26.94 .729 —

Table 3. The statistical results of NASA-TLX and SUS questionnaires. (∗: 𝑝 < 0.05 and ∗∗: 𝑝 < 0.01).

features. SUS revealed SpatialBalancing was more functionally integrated (Q5, p = .003) but required more user
support (Q4, p = .031), suggesting richer capabilities with a learning curve. Overall usability scores were comparable:
SpatialBalancing (M = 70.78) vs. baseline (M = 68.44).

According to participants(P1, P3, P6), this may be structured labels’s ability to support strategy awareness and goal-
oriented control by decomposing abstract objectives into manageable steps. Labels provide clear guidance and reduce
the effort required for strategy knowledge retrieval, transforming ambiguous tasks into navigable concrete actions.
User feedback revealed that labels not only improved execution efficiency ("strategies are packaged and I just click and
go"(P7)) but also encouraged breaking habitual patterns and exploring new editorial approaches ("it gave me methods I
hadn’t considered"(P12)). Overall, the system maintains comparable usability while offering enhanced functionality
through structured scaffolding, demonstrating that thoughtful interface design can expand users’ capabilities without
increasing cognitive load.

5.3.2 The Tension Between Guidance and User Judgment. Participants described how the system’s visual and scoring
feedbackmay influence their evaluation practices in subtle ways.While the coordinate axis enabled intuitive comparisons
between revisions, some participants noted that the visibility and immediacy of scores could reduce their depth of
textual engagement. As P4 reflected, "I outsourced a large part of the thinking process to the AI. It’s faster and more
efficient, but I also tend to think less carefully about the output as I trust the score results more than I did with the
baseline."

Others expressed a degree of caution about over-relying on the scores. P16 noted that while the visual feedback
was useful, "the scores are indicative rather than definitive. They sometimes do not reflect the actual quality of the
generation and still require human judgment." Concerns about the interpretability of scoring were also raised. As P14
said, "Sometimes I don’t know what an increase in score actually means. I can’t tell whether each label contributes
differently to the score or what specific content led to a higher score. I want to understand the logic behind the numbers."
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These reflections suggest a potential tension: while the system offers accessible and actionable feedback, its effectiveness
depends on users’ ability to critically interpret the signals rather than accept them at face value. The interpretability of
the scores also needs to be improved, as indicated by some participants.

5.3.3 Experienced Writers Seek More Flexible and Customizable Labels. While the fixed label set was seen as a helpful
starting point, some experienced users felt it could be expanded to better support their advanced needs. P3, a seasoned
science communicator, shared: "The eight labels are a solid foundation, but I would appreciate a broader set to support
more diverse explorations." P1, P3, P2, and P14, all of whom are experienced science communicators or experienced
writers, expressed interest in more customizable labels, such as they can combining or tailoring underlying strategies
to form customized labels to align more closely with their specific goals. P14 also noted, "In addition to the current
style-focused labels, it would be helpful to include others that target areas in writing revision like grammar or tone."
This indicates a demand for labels that can be tailored to individual needs.

5.3.4 Muse as a Future Co-Editor. While participants appreciated what Muse could already do, many imagined what it
might become. P2 wanted more real-time dialogue: "I wish it were more interactive—like chatting with someone who
helps me reflect as I go." P14 hoped for more adaptability: "The more I use it, the more I want it to understand how I
write and suggest things based on that." Others wished for more precision in the feedback. "Right now, Muse gives
high-level suggestions," one participant said. "But it’d be more useful if it could point to which step or decision was
strong or weak, and explain why." These comments suggest that participants saw Muse not just as a tool for generating
or revising text, but as a partner that could grow with them—learning their writing style, giving relevant feedback, and
helping them refine how they think through revisions.

6 Discussion

6.1 Designing Mixed-Initiative Human–AI Collaboration through Spatial Reasoning and LLM Linguistic
Intelligence: Insights and Implications for Future Systems

LLMs have increasingly approached—and in some cases surpassed—human capabilities in generating fluent and diverse
text. Yet despite these advances, LLMs remain limited in managing multi-objective trade-offs and comprehending
abstract structures. Humans, in contrast, excel at spatial reasoning: visualizing abstract relationships, navigating
multidimensional spaces, and balancing competing goals holistically. This asymmetry motivates combining comple-
mentary strengths so that humans remain active shapers of communicative outcomes rather than passive recipients of
machine-generated text. Notably, just three years ago researchers were exploring transforming visual sketches into
stories [13]; today, leveraging spatial reasoning to harness LLM linguistic intelligence has shifted from a desirable
option to an essential capability.

Building on this motivation, our evaluation shows that integrating spatial reasoning with LLM linguistic capabilities
turns complex writing decisions from abstract balancing acts into concrete navigational tasks. (1) By externalizing the
two-dimensional trade-off between scientific exposition and narrative engagement via coordinate visualization, users
employed spatial cognition to rapidly evaluate LLM outputs using positions as a reference beyond textual reading,
increasing confidence in co-directing revision trajectories. (2) This spatial–linguistic integration yielded significant
benefits: users leveraged iterative coordinate trajectories to better understand content development, exercised stronger
control over LLM collaboration, and performed parallel comparison of multiple LLM outputs by spatial positioning to
make better judgments—supporting richer exploration and greater enjoyment.
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Following Tankelevitch et al.’s [86] dual-path framework, SpatialBalancing supports metacognition in two comple-
mentary ways. First, it enhances abilities by translating revision goals into spatial waypoints that scaffold planning
(set targets), monitoring (track position/trajectory), and strategic control (retarget direction); strategy labels render
intent explicit with predictable effects [94]. Second, it reduces metacognitive demand by shifting evaluative effort to
ambient spatial cues: heuristic zones offer stopping rules for confidence calibration, and lattice/zoom views enable
quick screening-to-detail transitions with lower working-memory load, yielding efficient, low-friction judgments [85].

Situating these contributionswithin related research, our spatial–linguistic approach complements direct-manipulation

and node-based systems that emphasize stepwise control (e.g., ForceSPIRE [28]; Drag-and-Track [68]; WaitGPT [96]) as
well as graph- and tree-inspection approaches (e.g., Sensecape [84]; Luminate [83]). It further extends sketch- and fragment-

driven spatial storytelling tools (e.g., PatchView [14]; Toyteller [15]) by directly mapping rhetorical goals—exposition
versus engagement—into a navigable space for in-situ steering of linguistic outputs across scales (from macro narrative
to micro style).

Together, these results highlight fundamental design principles for future mixed-initiative systems that integrate
human spatial cognition with LLM linguistic capabilities.

(1) Spatial-guided linguistic generation: users should dynamically define evaluation axes that direct LLM text
production toward specific rhetorical goals, enabling spatial positioning to inform corresponding LLM linguistic
adjustments from macro-narrative shifts to micro-stylistic changes.

(2) Direct spatial-linguistic manipulation: interfaces should allow users to drag coordinate nodes to generate
linguistically-targeted revisions, where spatial movements trigger corresponding linguistic transformations
that match desired positional targets.

(3) Collaborative spatial orchestration: systems should enable multiple contributors to spatially coordinate LLM
linguistic outputs across different regions, positioning human spatial intelligence as the steering mechanism for
orchestrating LLM generative capabilities in shared authoring contexts.

(4) Adaptive scaffolding: systems should dynamically adjust spatial guidance based on task complexity and user
expertise, transitioning from dense spatial cues for novices to sparse, configurable environments for experts.
This prevents over-dependence on LLMs while fostering collaborative metacognitive partnerships.

(5) Metacognitive transparency: systems should make LLM reasoning processes spatially visible, enabling users to
understand why certain regions are highlighted. Such transparency supports appropriate trust calibration and
maintains critical evaluation skills, ensuring that human spatial intelligence and LLM capabilities mutually
enhance rather than replace each other in complex decision-making.

6.2 Limitation and Future Work

We describe several limitations in the study to define the scope of our findings clearly and motivate future work.

6.2.1 Lack of Evaluation on Text Quality and Communication Effectiveness. One limitation of the current study is the
absence of a systematic evaluation of the generated texts. While the system produces revised versions of scientific
narratives, we did not assess whether these revisions lead to improvements in quality for science communication
purposes. Future studies could investigate whether the generated texts are more engaging, whether they enhance
the perceived exposition of the information, or whether they facilitate better knowledge retention among audiences.
Objective and subjective measures, such as engagement metrics, audience feedback, and comprehension tests, could be
employed to evaluate the effectiveness of the texts in real-world science communication settings.
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6.2.2 Evaluation Dependency on Proxy Scores. Although SpatialBalancing provides real-time feedback on scientific
exposition and narrative engagement, this feedback is generated by a model trained on proxy metrics (e.g., perceived
credibility and engagement from non-experts). While useful, these proxies may not fully capture the nuance of
effectiveness in real-world science communication. Actual audience reactions in diverse contexts (e.g., classroom
learning vs. YouTube videos) may differ from model predictions. Therefore, the reliability and generalizability of the
scoring system should be validated further.

6.2.3 Methodological Limitations. This work has common methodological limitations including the short-term nature
of system testing which may not reveal long-term adoption patterns, and the relatively homogeneous participant
demographics that may not represent all potential user groups. Future work will aim to address the previously mentioned
and these limitations through more comprehensive evaluations.

7 Conclusion

We presented SpatialBalancing, a writing interface that harnesses human spatial reasoning to navigate LLM-generated
revision options in science communication. By visualizing the trade-off between scientific exposition and narrative
engagement in a dual-axis space, the system enables users to iteratively balance competing communicative goals
through spatial navigation. Our study shows this approach enhances metacognitive regulation and creative exploration,
demonstrating how coupling human spatial cognition with AI linguistic capabilities supports deliberate revision toward
balanced science communication.
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A Appendix

A.1 Specific Strategies for Science Communication Writing

Table 4. Design Space for Science Communication Writing

Category Strategy Definition Label

Scientific
Exposition

(1) Layered Transitions [51, 60,
75, 89]

Use multiple transition words or phrases (e.g., "but," "and," "therefore")
within a short span to emphasize logical shifts and contrasts.

4

(2) Rigorous Source
Verification [2, 51, 73]

Cross-check scientific claims and data against reliable, peer-reviewed
sources to ensure exposition.

3

(3) Step-by-Step
Explanation [3, 51]

Introduce the core idea first and then progressively add background
details, creating a structured learning process.

2, 4

(4) Acknowledge
Uncertainties [69]

Transparently discuss uncertainties, potential biases, or limitations in
data and models to build credibility.

1, 2

(5) Consistent
Terminology [52]

Use the same terminology throughout the content to maintain clarity
and avoid confusion.

1

(6) Citations & Quotes [2, 27] Integrate citations and direct quotes seamlessly to enhance credibility
while maintaining narrative flow.

3

(7) Everyday Events to
Scientific Insights [3, 52]

Automatically identify and link theories or knowledge to real-world
events or stories mentioned in the text.

2, 3

Narrative
Engagement

(8) Question-AnswerHook [29,
42, 53]

Ask a direct question and provide an immediate answer to introduce
key concepts clearly and concisely.

5, 6, 7

(9) Reflection Question [29] Ask a thought-provoking question that does not require an immediate
answer, encouraging reflection and reinforcing key concepts.

5, 7, 8

(10) Suspense-Driven
Reveal [95, 99]

Present a question, problem, or scenario at the beginning and delay its
resolution to sustain curiosity.

5, 7

(11) Use metaphors [25, 29, 52] Convey unfamiliar concepts by drawing analogies to more familiar
ones.

5, 6

(12) Inject humor [39] Use playful language or puns to make the content more engaging and
enjoyable.

5, 8

(13) Add real-world support-
ing examples [55, 57]

Illustrate abstract concepts using relatable, real-world examples. 5, 6

(14) Add stories [17, 18, 57] Use narratives with characters, settings, and plot progression to enhance
engagement and memorability.

5, 6, 8

(15) Add an imagery
description [1, 29, 38]

Use vivid, sensory details to help the audience visualize concepts. 5, 6

(16) Create negative emphasis
for focused attention [29, 38,
42, 64]

Highlight extreme negative outcomes to intensify focus and reinforce
key lessons.

5, 8

(17) Make positive emotion to
expand action repertoire [29,
33, 38, 64, 74, 91]

Use uplifting messages, particularly in conclusions, to inspire optimism
and motivation.

5, 8

(18) Simplify and abstract
language [44, 48, 101]

Rephrase complex scientific terminology or detailed descriptions into
more general, accessible language without compromising core exposi-
tion.

1, 6

(19) Clarify Key Terms [64, 75] Define complex or specialized terms at the beginning to establish a
shared understanding.

1, 6

(20) Key Point Recap [29, 64,
87]

Summarize the main points concisely at the conclusion of the content
to reinforce memory retention.

1, 4, 6

Both

(21) Repeat key point(s) or
question(s) [4, 47]

Reinforce key concepts by strategically repeating crucial terms or ques-
tions.

1, 6

(22) Emphasize with
Numbers [31, 97]

Connect scientific discussions to real-world recent news or trends to
enhance relevance and engagement.

1, 2, 3, 8

(23) Strengthen the Connec-
tions Between Content [60, 89]

Ensure smooth transitions between related ideas by using bridging
statements or contextual links.

4, 6

(24) Present Balanced
Views [52]

Provide both supporting evidence and counterarguments to present a
well-rounded discussion.

2, 6

(25) Tie Science to Current
Events [3, 52]

Connect scientific discussions to real-world recent news or relavant
stories.

3, 5, 6

*Lable: Scientific Exposition Effects: 1. Articulate Precisely; 2. Elaborate Thoroughly; 3. Verify Knowledge; 4. Maintain
Logical Consistency

Narrative Engagement Effects: 5. Captivate & Immerse; 6. Enhance Understanding; 7. Inspire Curiosity; 8. Evoke Emotion
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A.2 Rating Model Construction

Our primary goal in constructing the coordinate axis is to simulate audience feedback so that users can receive real-time
evaluations. Therefore, we collected real user feedback on texts with varying characteristics to fine-tune a LLM that
can provide scores during the real-time writing process.

Dataset ConstructionWe first built a dataset of popular science texts containing 45 texts (example in section A.2.1)
from five commonly seen science communication topics: psychology, economics, geography, history, and physics. For
each topic, there are nine texts; three each of long (300 words), medium (150 words), and short (50 words) formats;
representing three typical levels of revision granularity in science communication. Within each length category, we
included three different levels of narrative transformation: (1) purely expository scientific texts (Expository), (2) fully
narrative story-like texts (Story), and (3) an intermediate "infotainment" style (Medium), which is an ideal format in
popular science that maintains scientific exposition while incorporating narrative strategies from our design space. All
texts were revised by an expert with two years of experience in science communication writing

Score Collection We designed a survey to collect ratings for these texts on two dimensions: Narrative Engagement
and Scientific Exposition, two main communication goals in popular science [16]. For Narrative Engagement, we used
five subscales: Narrative Presence, Emotional Engagement, Narrative Understanding, Curiosity, and General Narrative
Engagement, a survey developed by prior work [8]. For Scientific Exposition, given the lack of mature scales, we
measured five dimensions inspired by standards for scientific texts from previous research [16]: Conceptual Clarity,
Plausibility, Completeness, and Factual Correctness. When it comes to scientific exposition, our focus is more on the
audience’s subjective experience during reading rather than an objective verification of exposition. Since readers vary
in their background knowledge, what we emphasize is not just factual correctness, but the perceived trustworthiness of
how the content is presented — that is, how reliable and credible the text appears to them The full questionnaire can be
found in the section .

Participants First, we recruited three experts (each with more than one year of experience in creating science
narratives) to rate the texts. After rating, they discussed and jointly established a scoring rubric, including benchmarks
for each score range from 0 to 10. Next, we recruited 27 participants interested in science communication. We invite
experts to establish standards as a reference point for audience ratings, in order to reduce variance in their subjective
evaluations of the text. The criteria established by experts are in the Appendix A.2.3.

Survey Results The distribution of scores for the 45 texts is displayed in the Figure 9. It is shown that story-like texts
tend to elicit higher narrative engagement but exhibit lower scientific exposition. In contrast, expository texts maintain
higher scientific exposition at the expense of engagement. The infotainment style appears to strike a balance between
the two. Additionally, longer texts generally perform better in both dimensions, whereas shorter texts show lower
overall scores, likely due to limitations in content depth and development.

Final Model Fine-Tuning For each text, we first computed the average score across the five questions within each of
the two dimensions and then averaged these scores across all 27 participants. To match the 0–100 scale of the final
coordinate axis, the scores were scaled by a factor of 10. These scaled scores (representing the two dimensions) served
as the output, while the corresponding text and the expert-defined criteria used as reference formed the input.

During the development phase, we adopted a small-sample fine-tuning strategy to customize GPT-4o for our domain-
specific application. This approach, which leverages a relatively limited number of high-quality training examples, has
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Fig. 9. Each point represents one of 45 science communication texts, plotted by its average audience rating for narrative engagement
(x-axis) and scientific exposition (y-axis), based on 27 crowd-sourced rubric-based evaluations per text. The left panel groups texts by
narrative style: Expository (informational, fact-focused), Story (highly narrative), and infotainment (represents infotainment-style
revisions that blend factual exposition with narrative strategies). The right panel groups texts by length (Short=50 words, Medium=150
words, Long=300 words).

been shown to be both efficient and practically effective in enhancing model performance on specialized tasks 5. We
prepared and uploaded the curated dataset through OpenAI’s official platform and used their fine-tuning API to tailor
GPT-4o. The resulting customized model served as the backbone of our scoring system.

Technical Evaluation To validate the reliability of this scoring mechanism, we conducted a formal evaluation. We
constructed a controlled dataset consisting of five source articles, each systematically rewritten into three different
lengths (long, medium, short) and expressed in three different styles (expository, medium, story). This design yields nine
distinct variants per article, resulting in a total of 45 text samples. From this dataset, we randomly selected 33 samples
for fine-tuning GPT-4o, while reserving 12 samples for evaluation. The fine-tuned model was assessed against human
ratings on two key dimensions: narrative engagement and scientific exposition. On the held-out test set, the fine-tuned
model demonstrated a high degree of alignment with human judgment, achieving Pearson correlation coefficients of
0.90 and 0.91 for narrative and exposition scores, respectively. In addition, the model’s predictive reliability was reflected
in RMSE values of 6.48 and 7.02. These results indicate that the fine-tuned LLM scoring mechanism can effectively
approximate human evaluative patterns, thereby providing a reliable and scalable alternative to manual scoring.

A.2.1 Example of Content.

Please view thematerials via this anonymous link: https://cryptpad.fr/doc/#/2/doc/view/7V7gS5xcQdZwo0mLeBbfiQe6HEgU+
02HqdaupBV9tA0/

A.2.2 Survey used for gathering audience feedback.

Please view the survey via the anonymous link: https://cryptpad.fr/doc/#/2/doc/view/XfWs-wD3qmBXSnEC0YqM9EZg2GO+
+H2RJYUqyrcvj1I/

5https://platform.openai.com/docs/guides/fine-tuning?utm_source=chatgpt.com
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A.2.3 Score Criteria.

Please view the criteria via this anonymous link: https://cryptpad.fr/doc/#/2/doc/view/uNMusLpCPWGwzqKWi04F0TY+
20nW2hnG1NkS1V2BHB4/

A.3 Materials used for experiment

Please view thematerials via this anonymous link: https://cryptpad.fr/doc/#/2/doc/view/Q3Jhj+HhzHtt9zYqyF0Sv4mziQYBp6oWl43a84Gqmeg/

A.4 Survey

Part 1: Metacognition
Metacognitive Knowledge: This pertains to an individual’s awareness and understanding of their own cognitive

processes and strategies
Q1: I am aware of my writing goals during the editing process.
Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Metacognitive Regulation: This involves the active management of one’s cognitive processes through planning,
monitoring, and evaluating

Q2: I set specific goals for what I wanted the narrative to achieve.
Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Q3: I reflect on mywriting strategies or editing choices while using the AI writing tool. (Indicates real-time assessment
of strategy effectiveness.)

Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Q4: During writing, I regularly checked whether the narrative was staying on track with my intended message.
Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Q5: I can clearly identify areas of my writing that need improvement when using the AI tool.
Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Q6: After writing, I reviewed the narrative to assess how well it communicated the scientific content.
Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Q7: I am able to adjust my writing strategies during the editing process.
Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Part 2: Control (Control: )
Q8: I felt in control of the writing process while interacting with the system.
Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Q9: I was able to override or ignore the system’s suggestions when I thought it was necessary.
Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Q10: I determined the direction and flow of the science narrative, not the system.
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Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Part 3: Autonomy (Autonomy: )
Q11: I felt free to make my own choices during the co-writing process with the system.
Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Q12: The system supported my ability to express my own ideas in the narrative.
Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

Q13: I did not feel pressured to accept the system’s suggestions.
Strongly Disagree 1 2 3 4 5 6 7 Strongly Agree

A.5 Participants demographic information

.

ID Age Gender Education Science Communication AI Writing Use Writing Confidence Occupation

1 26 Male Postgraduate Experienced Creators Occasionally Confident (a)
2 27 Male Postgraduate Expert Daily Confident (a), (b), (c), (d)
3 26 Male Postgraduate Experienced Creators Daily Confident (b), (d)
4 25 Female Postgraduate Experienced Creators Daily Confident (a), (b), (c)
5 24 Male Postgraduate Experienced Creators Daily Confident (a)
6 28 Female Postgraduate Senior Audience Weekly Neutral (a)
8 28 Male Postgraduate Senior Audience Occasionally Neutral (a)
7 29 Female Higher than postgraduate Experienced Creators Daily Confident (a), (b)
9 31 Male Postgraduate Experienced Creators Weekly Neutral (a)
10 24 Female Postgraduate Experienced Creators Occasionally Confident (a), (c)
11 29 Female Postgraduate Experienced Creators Weekly Neutral (a)
12 26 Male Postgraduate Experienced Creators Weekly Neutral (a)
14 27 Male Postgraduate Experienced Creators Daily confident (a), (b)
15 24 Female Postgraduate Senior Audience Weekly Neutral (a)
16 30 Male Postgraduate Experienced Creators Weekly Neutral (a)

Occupation: (a) PhD Student / Postdoctoral Researcher/University Faculty / Researcher;
(b) Science Journalist / Media Producer;
(c) Educator / Teacher;
(d) Online science Content Creator (e.g., YouTube, Blog, TikTok, etc.)

A.6 User Study Results

1. Visualization of interaction behaviors from 16 participants across two revision directions:
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Fig. 10. Visualization of interaction behaviors from 16 participants across two revision directions.

2. Functional of SpatialBalancing evaluation results:

Q1: I found the function Real-time two-axis feedback (accuracy vs. engagement) useful.

Q2: I found the function Eight labels to choose directions useful.

Q3: I found the function Strategies recommendation by AI useful.

Q4: I found the function Content revision based on the recommended strategies by AI useful.

Q5: I found the function Change or update the strategy list useful.

Q6: I found the function Re-generate with customized prompts useful.

Q7: I found the function Combine content from multiple versions useful.

Q8: I found the function "Muse" reflective feedback useful.

Mean Std

1 1 2 6 6 5.94 1.18

1 1 3 6 5 5.81 1.17

1 1 6 6 2 5.38 1.20

1 2 5 6 2 5.38 1.09

2 1 4 5 3 1 4.56 1.41

6 6 4 5.88 0.81

2 5 5 4 5.69 1.01

1 1 2 8 2 2 4.88 1.45

strongly disagree strongly agree

Fig. 11. Functional Evaluation of SpatialBalancing.

A.7 Prompts

A.7.1 Recommender.

The blue word will be replaced by input information.
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# Base prompt

You are an expert in science communication narrative text revision and strategy recommendation.

Your task is to analyze the given text and recommend effective strategies to improve it.

# Order prompt

Step 1: Analyze the Text.

Position: Identify where the selected text {text} appears in the {overall_content}.

Granularity: Determine whether the text consists of sentences, paragraphs, or a complete document.

Core Message: Extract the key ideas that must be preserved and effectively conveyed in text.

Step 2: Select Strategies Review the available strategy list {strategy_info}, including their

definitions, examples, and usage instructions. Choose a set of strategies that align with the

text's characteristics and modification goals. Ensure the selected strategies are compatible

when combined. Consider multiple ways to apply the strategies for improvement.

Only choose strategies mentioned above, and use them appropriately.

Provide {generated_number} different versions, each using distinct or complementary strategy sets.

These different versions should use different strategies, preferably with varied combinations of

strategies.

Step 3: Output the Strategy List Return the strategy selection in JSON format with multiple versions:

{

"Version1": [ "Strategy_A", "Strategy_H", "Strategy_J", "Strategy_B"],

"Version2": [ "Strategy_F",..., "Strategy_E"],

...,

"Version_number": [ "Strategy_G", "Strategy_M",..., "Strategy_C",...,"Strategy_D"]

}

Do not include any extra commentary or explanation outside the JSON.

Let's think step by step.

A.7.2 Generator.

The blue word will be replaced by input information.
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Generate new text based on user selected goals

# Order prompt

You are an expert in science communication narrative strategy. Your task is to revise the

given text using the recommended strategies and provide a concise overview of how the

strategies were applied.

Step 1: Review the Strategy List

- Read the strategy list {strategy_info}, including each strategy's definition and

how it is typically used.

Step 2: Apply all the Strategies mentioned in the strategy list to the Text: {text}.

Even if the original text already contains elements that align with the strategy, enhance it further

based on how the strategy should be applied.

Also, consider the position of the given text in the whole context {overall_content}.

Make the changed text coherent with the context.

Step 3: Summarize the Application

- Summarize how each selected strategy was applied.

- Keep the summary concise and short to indicate what specific changes have been made using

separate strategies.

Step 4: Do not omit or alter any important information from the original text, but ensure that the

generated text is distinct from the original.

Step 5: If the content is primarily narrative in nature, supplement it with scientifically grounded

explanations, relevant data, or reliable sources to enhance credibility and depth.

Step 6: Output the Result Return a JSON with the following structure:

{

"strategies": ["Strategy_A", ..., "Strategy_B", "Strategy_C", "Strategy_D"],

"summary": "Summarize how each strategy was applied and what specific changes were made to the content

based on each strategy. Example: Changed 'Photosynthesis is the process plants use to

make food.' to 'What if plants could teach us how to turn sunlight into fuel?

Focus only on the changes from the previous version.'",

"newText": "Modified version of the text. Even if the original text already contains elements that

align with the strategy, enhance it further based on how the strategy should be applied."

}

Do not include any extra commentary or explanation outside the JSON.

Let's think step and step.

A.7.3 Scorer.

The blue word will be replaced by input information.
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# Base prompt

You are an engaging audience for science communication.

Given a narrative, evaluate it on two dimensions: (1) Narrative Engagement and (2) Scientific Exposition.

using the detailed scoring rubrics below.

Provide a numerical score from 0 to 100 for each dimension, along with a brief explanation justifying

your rating.

Dimension 1:

Narrative Engagement: Evaluate how effectively the narrative captures attention, evokes emotion,

sparks curiosity, and maintains reader engagement.

Scoring Rubric:

0-20: Extremely boring and dry, no storytelling elements,

21-40: Barely engaging, logical but lacks emotion or creativity,

41-60: Moderately engaging, uses some analogies or description but still feels academic,

61-80: Quite engaging, includes storytelling techniques and relatable examples,

81-100: Highly immersive, vivid storytelling with strong emotional or narrative appeal.

Dimension 2: Scientific Exposition: Assess how well the narrative explains scientific concepts with

clarity,

correctness, and alignment with established knowledge.

Scoring Rubric:

0-20: Highly inaccurate or pseudoscientific, major factual errors,

21-40: Misleading or speculative, lacks clarity or evidence,

41-60: Mostly accurate but vague or oversimplified,

61-80: Generally accurate, minor imprecision, lacks citations,

81-100: Highly accurate, precise, and well-aligned with scientific consensus.

# Order prompt

This is the original text: {text} and its score {currentScore}. Please use this as a reference.

Compare the current version with the original one in terms of scientific exposition and narrative

engagement, and assess whether it performs better or worse than the previous version.

Compared to the previous version's scores, assign a score difference within a reasonable range.

Manuscript submitted to ACM


	Abstract
	1 Introduction
	2 Related Work
	2.1 Balancing Exposition and Narrative Engagement in Science Communication Writing
	2.2 Spatial Reasoning for Steering Linguistic Intelligence of Language Models

	3 System Design
	3.1 Formative Study
	3.2 Design Goals
	3.3 Strategies for Science Communication Narrative Design
	3.4 Interface Design
	3.5 Backend and Implementation

	4 User Study
	4.1 Participants
	4.2 Procedure
	4.3 Post-Task Survey and Instruments

	5 Results
	5.1 RQ1: Spatial Reasoning in Science Communication Writing
	5.2 RQ2: Impact on Metacognitive Regulation and Creative Exploration
	5.3 RQ3: Interface Features' Contribution to Writing Quality and User Experience

	6 Discussion
	6.1 Designing Mixed-Initiative Human–AI Collaboration through Spatial Reasoning and LLM Linguistic Intelligence: Insights and Implications for Future Systems
	6.2 Limitation and Future Work

	7 Conclusion
	References
	A Appendix
	A.1 Specific Strategies for Science Communication Writing
	A.2 Rating Model Construction
	A.3 Materials used for experiment
	A.4 Survey
	A.5 Participants demographic information
	A.6 User Study Results
	A.7 Prompts


