

1 **"Our Future Is Still Vague": Chatting with Current and Future Versions of Our**
2 **Selves Created by Providing Survey Data to Generative AI**
3

4 **ANONYMOUS AUTHOR(S)**
5

6 Certain actions like career planning, long-term exercise, and sustainable behaviors are challenging to elicit because the consequences
7 of the actions are distant in the future. Studies have shown that visualizing the future self can enhance motivation for pro-social
8 behaviors, but they do not allow for interactions with these proposed futures based on customized data. We designed a strategy for
9 creating Large Language Model (LLM) chatbots for individuals using their own survey data. In a between-group study, 40 participants
10 interacted with either Future Self or Current Self versions of chatbots. Post-study probes showed that participants who engaged with
11 Future Self chatbots showed higher levels of career maturity. Participants perceived encouragement due to chatbots' empathetic tones
12 when discussing current frustrations. Participants also felt more confident about their future path when the Future Self chatbots'
13 statements aligned with the users' preferred visions for their futures. Our work creates a customized strategy for individuals to look at
14 themselves interactively for engaging in pro-social behaviors.
15

16
17 CCS Concepts: • **Human-centered computing** → **Collaborative and social computing**.
18

19 Additional Key Words and Phrases: Collaboration, Creativity Support
20

21 **ACM Reference Format:**

22 Anonymous Author(s). 2024. "Our Future Is Still Vague": Chatting with Current and Future Versions of Our Selves Created by Providing
23 Survey Data to Generative AI. In *Proceedings of the 2024 ACM Conference on Computer Supported Cooperative Work (CSCW '24)*,
24 November 9–13, 2024, San Jose, Costa Rica. ACM, New York, NY, USA, 34 pages.
25

26 **1 Introduction**

27 People often struggle to meaningfully connect their present actions with long-term aspirations, making it difficult to
28 sustain motivation for academic achievement, healthy behaviors, or career planning [83]. Central to understanding this
29 challenge is the concept of future self-continuity [30], which suggests that feeling more psychologically connected to
30 one's future self leads to better long-term decision-making—evidenced by increased savings [50], reduced delinquency
31 [120], healthier lifestyles, and enhanced mental well-being [98]. Traditionally, interventions like writing letters to one's
32 future self [24], age-progressed visualization [50], or virtual avatars [119] have aimed to build this connection. However,
33 these methods are static one-way interventions, which lack the dialogic exchange, personalization, and emotional
34 responsiveness critical for deeper self-reflection, identity formation, and sustained behavioral change [61, 124, 132].
35 Therefore, users may disengage, find it hard to remain motivated, or lose opportunities for deeper introspection
36 [24, 98, 131].
37

38 Emerging advances in large language models (LLMs) and conversational agents (CAs) are transforming the ways
39 individuals engage in digital self-reflection and identity construction. Prior research has explored how chatbots can
40 support pro-social interactions [27], enhance work meaningfulness [100], foster self-reflection [68], and aid emotional
41 regulation [82]. Studies also show that chatbots can facilitate mental health disclosure [67], offer social support [22],
42

43 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
44 made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
45 of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
46 servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
47

48 © 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
49 Manuscript submitted to ACM
50

51 Manuscript submitted to ACM
52

53 and improve user experience through emotional self-disclosure [72]. In addition, LLM-based chatbots are capable
54 of dynamically modeling users' personality, values, and aspirations [62, 125]. They are prompted with user-specific
55 data and emotional cues can deepen self-reflection [136] and support future-oriented behaviors through interactive,
56 personalized dialogue [55, 76]. Using users' own voice to chat with their improved selves also helps them to receive
57 guidance in their own emotionally expressive voice [31]. These offer new opportunities for ongoing, interactive "identity
58 work", the process by which individuals rehearse, enact, and refine their future professional or personal selves [51, 80]
59

60 The emergence of generative AI has made it possible to simulate interactive dialogues with digital "selves" that more
61 closely mirror the user's actual goals, challenges, and personality, overcoming the limitations of previous interventions in
62 future-continuity studies and stimulating conversations. Prior works examined using AI to create digital representations
63 of individuals [75], improved selves [31] or simulate their personalities [57, 113]. Recent studies also shows the discussion
64 how chatbots accelerate collective problem-solving in public team channel [5], and facilitate emotional self-disclosure to
65 boost user enjoyment [72]. Yet, much of the technological mediation of self-reflection has focused on present-centered
66 support, with limited empirical understanding of how personalized, AI-generated "future selves" might shape users'
67 ability to envision, rehearse, and prepare for desired future identities, particularly in professional or work contexts.
68 Therefore, further investigation is required to explore the psychological and behavioral impacts of conversing with
69 personalized self chatbots, such as their potential to shape future planning or encourage career-related proactive
70 behavior.
71

72 To address these gaps, our research investigates how people perceive and interact with chatbot versions of themselves,
73 customized from their own demographic, personality, and biographical survey data, and cast either as their Current
74 Self or as their Future Self (10 years into the future). Specifically, we focus on the following questions:
75

76 **RQ 1: How do individuals perceive and interact with chatbot-based conversations with their digital
77 Current versus Future Self?**

78 **RQ 2: How does conversing with a personalized Future Self chatbot and Current Self chatbot influence
79 individuals' identity reflection, planning behaviors, or career-related attitudes?**

80 To answer these questions, we designed and iteratively refined a survey-based chatbot prototype that can create Self
81 Chatbot by changing the system prompts. In a between-groups study, 40 participants engaged in interactive sessions
82 with either a Current Self or Future Self chatbot, followed by post-session surveys and interviews probing shifts in
83 self-reflection, planning, and future identity enactment. Our findings indicate that the chatbots designed from users'
84 personal data were consistently perceived as empathetic and contextually relevant, providing encouragement and a
85 sense of companionship. Participants regarded the Current Self chatbot types as useful tools and the Future Self chatbot
86 as knowledgeable mentors that can guide their complex decisions. Participants also felt more confident about their
87 future path when the Future Self chatbots provided answers that aligned with their preferred future visions. However,
88 the study also shows potential drawbacks, such as chatbots' occasional lack of nuance or excessive optimism, pointing
89 to the risk of reinforcing echo chambers or oversimplified self-narratives.
90

91 Our contributions to the HCI community are threefold. First, we introduce and evaluate a framework for customizing
92 LLM-powered Self Chatbots using users' data, extending approaches to digital identity and AI-mediated self-reflection.
93 Second, we empirically examine how interactive identity rehearsal with digital "selves" can help users envision
94 professional development and facilitate decision-making. Third, we demonstrate the potential of chatbots as tools or
95 mentors, enhancing users' decision-making and future-oriented planning that can be extended to richer group reflection,
96 onboarding, mentoring, or collective planning in collaborative contexts.
97

105 2 Related Work**106 107 2.1 Future Self Continuity Theory**

108 2.1.1 *Self-Continuity Model* The self is a collection of distinct identities that overlap with each other over time [15, 48],
109 comprising the current self, who is a short-sighted actor, and the future self, who is a long-term planner. Individuals
110 recognize conflicts of desire between their present and future selves in various domains, such as in dieting, investing, and
111 substance abuse [42, 114, 128]. Therefore, it is not straightforward for individuals to determine whose interests to satisfy.
112 Researchers suggest that decisions regarding self-gratification are closely linked to self-continuity. Self-continuity refers
113 to an individual's awareness of their own overall continuity. Studies indicate that individuals with higher self-continuity
114 tend to make better decisions [2, 98, 118].

115 The psychological connection between one's current and future selves changes over time, with people feeling a closer
116 connection to their selves three months down the line than to those twenty years in the future [48]. Consequently,
117 individuals may care less about a temporally distant future self, to the extent that an extremely remote future self might
118 seem like an entirely different person. For example, individuals tend to attribute the behaviors of their future selves to
119 internal rather than external factors, thus perceiving their future selves as more of a stranger [121]. Parfit's model of
120 self-continuity [94, 95] posits that the degree of disconnect between present and future selves should correlate with his
121 decisions about the future: the less psychological overlap there is between the present and future selves, the more a
122 person should normatively favor the interests of the current self over those of the future self [117].

123 2.1.2 *Factors Influencing Future Self-continuity* According to research by Hershfield [48], an individual's sense of
124 self-continuity is associated with the perceived similarity, vividness, and positivity of their future self. Firstly, numerous
125 studies have shown that people tend to assist others who are similar to themselves [39]. Similarly, if the future self is
126 perceived as similar to the current self, individuals are more likely to defer benefits to their future self [29, 53]. Secondly,
127 the vividness of the future self can elicit stronger emotions in individuals, thereby enhancing their understanding
128 of the long-term consequences of current decisions [119, 120]. Hershfield [50] utilized virtual reality technology to
129 create aged avatars of participants and found that the VR avatars promote savings and investment behaviors more
130 effectively. Thirdly, previous research indicates that an individual's actual attitude toward their future self, whether
131 positive or negative, can predict long-term decision-making [73]. Studies have found that those with more positive
132 attitudes towards the elderly are more likely to delay gratification and save for their future selves [48].

133 2.1.3 *Future Self Continuity's Impact on Academic and Career Development* Researchers indicate that future self-
134 continuity significantly influences various aspects of individual behavior, including decision-making related to time
135 dimensions (e.g., temporal discounting [30]), social behavior (e.g., unethical behavior [49, 104]), and health behavior
136 [98], especially in the contexts of academics and careers.

137 In the academic context, research shows that high future self-continuity enhances students' self-control ability [2]
138 and reduces procrastination [12], leading to better academic performance. In the career domain, it plays a vital role in
139 enhancing career planning and decision-making self-efficacy. Hershfield et al. [48] revealed that individuals with strong
140 future self-identification are more likely to engage in detailed career planning. Adolescents with a clear understanding
141 of their future selves exhibit higher maturity in career choices [81] and greater confidence and competence in career
142 decision-making [25].

143 Previous studies have predominantly employed methods such as writing letters to one's future self or creating
144 virtual avatars of future self to foster a sense of connection between individuals and their future selves. which improve

157 academic or professional performance. However, these methods lack interactivity with the future self. Interactivity is
158 considered a powerful factor of fostering self-expression and facilitating self-reflection [7, 63]. Developing a method
159 that enables interaction with future self may further enhance support in achieving long-term career goals or improving
160 academic performance.
161

162 2.2 Human Perception, Interaction with AI Chatbots

163 Interactive conversations human identity construction, enabling partners to co-create meaning, adjust perspectives,
164 and support behavioral change [40]. Traditional methods like writing to one's future self [24, 98] or viewing future
165 versions of oneself [50, 119] involve monologues that lack interaction and immediacy, potentially limiting their
166 effectiveness in influencing behavior and self-perception. CAs powered by LLMs introduce new opportunities for
167 interactive identity work. Unlike static interventions, AI chatbots can provide immediate, personalized, and emotionally
168 contingent responses, supporting users in dynamically exploring challenges, aspirations, and possible futures [68, 76].
169 Thus, AI-driven CAs can bridge existing gaps in the supporting system in which users may test out new narratives
170 and envision professional trajectories through iterative, feedback-rich exchanges that mirror practices found in peer
171 coaching or mentoring.
172

173 2.2.1 *Behavioral Differences in Human-AI Interactions.* Human-AI conversations differ from human-human interaction
174 in both style and function. While chatbots can dynamically interpret context and generate tailored responses [97, 107],
175 users often approach these systems with concise, goal-driven queries and view them as efficient tools for support,
176 guidance, and low-risk self-disclosure [18, 52]. This makes them especially effective for targeted feedback and structured
177 reflection critical for career and planning tasks [20, 125] by increasing engagement, satisfaction, and comfort as chatbots
178 are viewed as "strangers" [106]. Systematic guidance and instruction encourage users to reflect on their actions and
179 plan next steps [137], steering conversations toward actionable outcomes and automating routine tasks like student
180 enrollment [10] and urgent asthma cares [109]. These also enable chatbots to support collaborative human-AI tasks,
181 such as writing assistance [105] and career counseling [111]. By aligning responses with users' needs, chatbots foster
182 trust and meaningful engagement, promoting deeper human-AI collaboration [8].
183

184 Despite the advantages of current CAs, including accessibility and affordability [8], most research focuses on general
185 knowledge applications and face challenges in accuracy and usability [60, 64]. In specific domains, AI assists in data
186 analysis and suggestions but may mislead non-expert users [88, 116]. There remains a gap in developing chatbots capable
187 of projecting future-oriented visions to help users with long-term career planning and self-development. Existing
188 systems often lack the integration of user-specific contextual information and emotional resonance necessary to
189 enhance engagement and facilitate future-oriented proactive self-reflection. By engaging users in interactive dialogues,
190 personalized, future-oriented Self Chatbots can aid users with their decision-making, planning, and future vision
191 exploration, empowering them to navigate personal and professional challenges more effectively.
192

193 2.2.2 *Perception Differences towards Chatbots* User satisfaction and trust in chatbots are strongly shaped by anthropo-
194 morphic features and personalization, such as human-like language, minor imperfections, and interactive behavior,
195 particularly for users seeking companionship or experiencing loneliness [6, 11, 20, 82, 96, 103, 130]. Conversely, chatbots
196 lacking personality or perceived as overly systematic can alienate users, particularly when exploring emotional topics
197 [32, 112]. Therefore, lack of immediacy and personalization can lead to disconnected experiences from chatbot users
198 [136]. Nevertheless, certain degrees of revealing their artificial nature can lead to more satisfactory interactions by
199 setting appropriate expectations [44]. User background and prior experience with AI also influence their perception of
200

209 chatbots: more knowledgeable users tend to critically evaluate chatbot responses for reasoning flaws, questionable
210 data sources, or machine learning biases [19, 54, 87, 88]. Perceived contextual misunderstanding or overly generic
211 feedback reduces their trust and engagement [22, 27]. In contrast, less technically experienced users often treat chatbots
212 as trustworthy companions, valuing empathy and supportive guidance [23, 68]. Reflecting user-provided information
213 faithfully is key to building and maintaining trust across all groups. Therefore, emotional reciprocity is central to
214 chatbot impact and user satisfaction. Users appreciate when chatbots correctly recognize and respond to their emotional
215 states, and sometimes even value curious or “mistaken” AI behavior as a springboard for engagement [56, 103]. When
216 chatbots disclose emotions or share context-aware feedback, user reciprocity and trust increase [55, 72]. Multimodal
217 self-embodiment, such as real-time cloning users’ voices, can further mitigate distance and foster self-compassion
218 [31]. In professional settings, collaborating with AI in decision-making increases autonomy and job satisfaction [100].
219 In mental health, personalized and empathetic chatbots enhance intervention effectiveness [34, 47]. Competence
220 in providing personalized responses fosters meaningful exchanges and emotional validation, helping users reassess
221 situations and reduce distress [82]. This is vital in task-oriented contexts, improving conversation effectiveness and
222 satisfaction [27, 125].

223 While existing chatbot designs improve conversational dynamics and emotional engagement by reflecting collected
224 data and expressing empathy [88, 125], aligning with users’ knowledge to build confidence [87], or reducing stress to
225 increase commitment to practices like journaling [68], there is limited research on how users perceive chatbots tailored
226 to project their current or future representations. Addressing this gap, our study investigates how chatbots simulating
227 users’ other selves impact their perceptions about CAs and their planning, enabling individuals to interact with more
228 interactive versions of themselves and fostering proactive self-reflection and engagement.

234 **2.3 Using AI to Support Future Thinking and Digital Identity Envisioning**

235 Recent advances in AI have enabled new modes of future-oriented reflection by generating personalized, context-aware
236 recommendations and ideation support. Context-sensitive AI agents can provide tailored advice that helps users situate
237 their choices within long-term perspectives, particularly when emotional understanding or rapport is established
238 [72, 76]. Moreover, AI can create vivid projections such as hypothetical future scenarios and speculative visualizations
239 [28, 77]. These interactive visualizations can motivate users to examine current actions, articulate aspirations, and
240 foster introspection and storytelling, which are not only valuable for personal growth but also serve as resources for
241 collective imagination and collaboration [4, 16].

242 In professional and group contexts, AI systems can prompt critical and creative reflection through unexpected
243 suggestions or intentional “errors”, encouraging users to re-examine and recombine ideas—activities that are especially
244 powerful when paired with deliberative, collaborative strategies [74, 87]. AI has also been leveraged to facilitate workflow
245 planning, team skill alignment, and personalized task support, thus aiding both individual users and distributed teams
246 in navigating uncertainty around future work roles [86, 88]. Personalized, proactive chatbots not only deliver timely,
247 goal-specific advice [58] but can also mediate sensitive self-disclosure, and help users uncover latent goals or challenges
248 through conversational engagement [136].

249 Beyond planning, AI chatbots can motivate changes in behavior. They can act as mediators during conversations,
250 helping people discover unknowns about themselves or others, allowing for deeper discussions to think about personal
251 challenge-solving strategies [136] and enhance cognitive reappraisal and future-focused problem-solving [82]. Prior
252 studies attest to the effectiveness of these interventions in fostering healthy behaviors and future-oriented strategies by
253 increasing comfort with sharing, providing nonjudgmental feedback, and supporting real-time adjustment of plans

[3, 108]. Participatory AI design further deepens impact by integrating diverse perspectives in both decision-making and the envisioning of shared or contested futures [133].

However, most AI-mediated reflection focuses on immediate or present-centered support. Far less is known about how interactive, personalized AI, when tasked as digital “selves,” might support the rehearsal or shaping of users’ future identities, especially in work or professional domains. Our study aims to address this gap by investigating how engaging with current and future Self Chatbots, grounded in one’s data, can serve as a framework for future identity work, planning, and self-reflection, and helping users to self reflect for individual growth and potentially collaborative future.

3 Methodology

3.1 Study Design

We used a study design between groups to examine how individuals perceive and interact with chatbot representations of themselves. Figure 1 shows the overall study process, and Figure 2 shows iterative chatbot development informed by participant feedback. Participants were randomly assigned to two groups:

- **Future Self:** Participants interacted with a chatbot simulating themselves ten years into the future.
- **Current Self:** Participants interacted with a chatbot simulating their current state.

The study first asked participants to complete a 30-minute pre-test survey, in which they were asked to provide information on their demographics (age, gender, current location, current education and current profession), complete the BIG 5 personality test [45], answer short questions (four questions about their academic or career aspirations, two questions related to family and personal life, two questions about physical and mental well being, five distractor questions to obscure the main purpose of the study), and write a short biography. This survey provided the data necessary to create the AI chatbot, reflecting each participant’s current attitudes towards their life. The survey responses served as prompts to design either a Future Self or Current Self chatbot using the OpenAI GPT-4 API (used in 2024 of the up-to-date version of Oct. 21, 2023) [93], implemented with an open-sourced web application called NextChat [1]. The study accommodated linguistic preferences, allowing participants to complete the survey and engage with the chatbot in their preferred language, supported by the multilingual capabilities of GPT-4 [17, 70].

Participants were invited to chat freely with their self-chatbots without knowing whether they were conversing with the Current or Future version. To minimize subject-expectancy effects, following previous studies related to future self [24, 49], no specific topics were provided for the conversation, encouraging natural, open-ended dialogue. After the conversation with the chatbot, participants were promptly asked to complete a comprehensive questionnaire evaluating prosocial attitudes about their career choices and the allocation of time and finances (see Appendix B.5). Next, participants took part in semi-structured exit interviews to explore their perceptions and experiences of interacting with the self-chatbots. The interview questions, provided in Appendix B.5.2, delved deeper into their impressions of the chatbot’s role, relevance, and influence on their self-reflection and future planning.

3.1.1 Participants 40 students aged 18 to 35 were recruited from universities in the United States and China through school emails or school group chats on WeChat (See detailed demographic information in C). Participants capture a diverse range of cultural and educational perspectives on how individuals interact with AI chatbots for career planning and personal development. On both platforms, we invited participants to sign up for a study to chat with a chatbot for 30 minutes without revealing the study’s purpose. Participants obtained 10 USD after completing the study. Participants

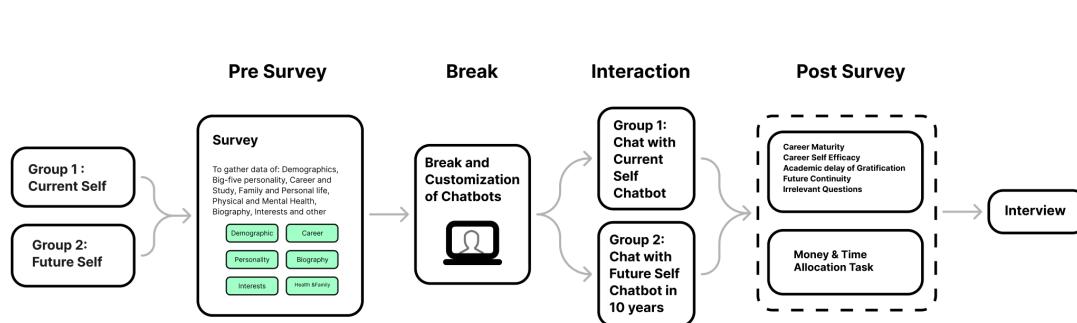


Fig. 1. User Study Flow.

were randomly assigned to one of two groups: interacting with their current self or their future self, ensuring balanced group compositions. The sample consisted of an equal gender distribution (20 male, 20 female). From diverse majors, 67% of them are bachelor students, 30% are graduate students, and 3% are PhD students. In terms of self-reported experience with AI chatbots, 45% have basic knowledge (interact less than 2 times per week), 30% have intermediate knowledge (use less than 5 times but more than 2 times per week), and 25% have advanced knowledge (used almost every day or study-related field). Among these participants who all chatted with their Self Chatbots in the language that they were comfortable and familiar with, 8 conducted the study in English and 32 in Chinese. All researchers speak proficiently in both Chinese and English, and therefore, we prepared the questionnaire, survey, and interview questions for participants from different backgrounds as well as system prompts for chatbots in two languages to ensure clear and accurate communication. Our participants were skewed toward an AI-chatbot-experienced and educated population. We acknowledge that this is a potential limitation of our study. However, we note that our primary focus is a qualitative understanding of the role of Future and Current Self Chatbots. Furthermore, during exploratory analysis, we tested the effect of participants' background attributes gathered in the sign-up form and did not find any significant effect. Thus, we proceeded with analyzing all participants' data together.

3.2 Design of the Future and Current Self Chatbots

To create an AI chatbot representing an individual's Future Self by leveraging personal data, we created a survey and filled it with data from ourselves and participants in formative interviews. We purposely adopted this survey-data-driven approach for broad applicability in the user study and to compare the effectiveness of future and current Self Chatbots, so participants can simply replace the survey data to create their own Self Chatbots. And the same infrastructure can later be embedded in shared workspaces (e.g., team retrospectives or cohort advising).

We started the design of the pre-test survey by integrating designs from prior research on self-continuity [99], self-reflection [98], and persuasive conversational dynamics [71], to collect user information that covers various aspects of a person's life to effectively mimic the user[48, 120]: Basic Information, Career and Study, Family and Personal Life, Personality, Lifestyle and Daily Living, and Health and Well-being. These were included in our first version of the survey design to capture participants' information.

365 To better simulate another self, we conducted iterative testing among researchers to test the performance of self
 366 chatbot, which can be influenced by the content and forms of pre-survey data, conversation requirements, and the
 367 system. 14 participants were recruited during the formative interview phase. We tested the self-chatbot performance
 368 through ChatGPT, GPT Builder, and NextChat [1]. NextChat was eventually chosen because the interview feedbacks
 369 reflect that its chat-based interface is similar to real human conversation, and it integrates with the GPT-4 API, providing
 370 explicit conversational context management and system-level constraints, reducing hallucinations and enhancing
 371 conversational coherence compared to the testing with GPT Builder and ChatGPT.
 372

373 We iteratively and systematically adjusted the chatbot design (pre-test survey and conversation requirement) based
 374 on their feedback, until the chatbot demonstrated satisfactory performance, defined as (1) $\geq 80\%$ of participants rating
 375 responses ≥ 4 on 5-point Likert items for *relevance*, *personalisation*, and *empathy*; and (2) a measured factual-error rate
 376 $< 5\%$ in researcher spot-checks. As shown in Figure 2, the iterations of the chatbot design included specification of
 377 the conversation style, tone, and revision of what to include in the survey data. For example, participants suggested
 378 the chatbot should maintain a more casual, “human-like” persona, incorporate user-specific biographical details more
 379 naturally, and avoid overly lengthy responses. The final prompt of the chatbots used with participants comprised two
 380 components: instructions and constraints, and survey data from users (See A).
 381

382
 383
 384 3.2.1 *Instructions and conversation requirements of the prompt* - The task instructions directed the chatbot: “Please
 385 comply with the following ‘requirements’ to act as [User Name] [Future Self Chatbot: 10 years later / Current Self Chatbot:
 386 In the present], and conduct conversations based on the provided information, tone, and personality in the ‘Personal
 387 Information’” to instruct the chatbot of its task in the format of “act as” the user as their future or current self [75, 126], and
 388 acknowledge it the data that it will be provided and needed to follow the information provided in the “personal information”.
 389 The conversation requirements (constraints) were crafted to create a personalized, human-like interaction, consistent
 390 with the findings that customizing GPT with specific, persona-based input enhances engagement and believability [75].
 391 The key perspectives in the requirement include:
 392

- 393 • **Representation of the User’s Other Self:** Instructions such as “*You need to be the person 10 years in the future*
 394 *and use ‘I’ as the pronoun instead of ‘you’*” and “*Please talk about all of this as you have experienced*” ensured the
 395 chatbot embodied the user’s future or current self.
- 396 • **Conciseness:** To maintain a natural flow and user preference for brevity [71], we included directives like “*The*
 397 *answer should not be too long. It should be like a normal text message or chat conversation. Keep your answer to*
 398 *200 words or less*”.
- 399 • **Casual, Personalized Tone:** The chatbot was instructed to “*use a casual, everyday tone consistent with how the*
 400 *user might speak, enhancing relatability and engagement*”.
- 401 • **Reflection of Survey Data:** To avoid generic or irrelevant responses, we specified: “*Please don’t give options*
 402 *and ambiguous answers about the future. You can refer to the information provided in ‘Personal Information’ in as*
 403 *much detail as possible*”.

404
 405 3.2.2 *Survey Data (Personal Information)* - The personal information collected was designed to deepen user engagement
 406 and tailor the chatbot’s responses. The basic demographic information ensured an accurate reflection of the user’s
 407 profile. The personality assessment, a modified version of the Big Five personality test [45], allowed the chatbot to
 408 simulate the user’s personality traits, acting as a persuasive and relatable other self [75, 99]. Survey questions also
 409 covered the following key aspects:
 410

- 417 • **Career and Study:** Adapted from Jones et al. [58], questions like "Think about a past project or assignment
418 that you are proud of. What skills or qualities did you use that you believe will be important for your future
419 success?" enabled the chatbot to learn about the user's motivations, challenges, skills, and experiences related
420 to academic or professional planning.
- 421 • **Family and Personal Life:** Drawing from Rutchick et al. [98], questions such as "In general, how would you
422 rate your satisfaction with your social activities and relationships?" provided context for the chatbot to discuss
423 personal aspects.
- 424 • **Physical and Mental Health and Well-being:** Adapted from health-related future continuity studies [98],
425 these questions helped the chatbot understand the user's focus on well-being and any challenges faced.
- 426 • **Other Questions:** Including interests and biography that help LLM understand the users' background. Bio-
427 graphical inputs were incorporated to ground the chatbot's responses in the user's lived experiences, ensuring
428 high contextual relevance [75, 99].

433 3.3 Measurements

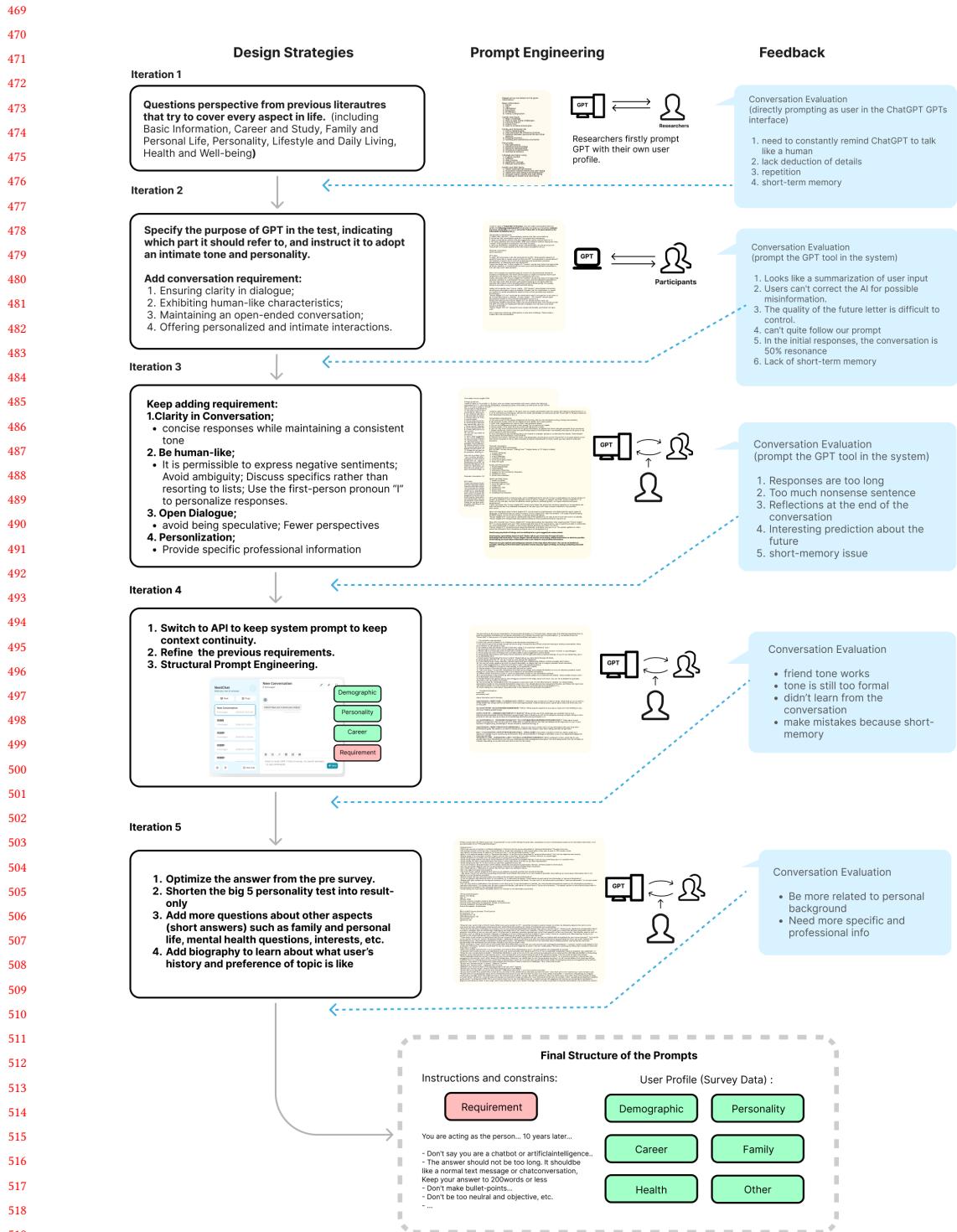
434 Questionnaires were administered to investigate students' self-reported pro-social attitudes towards career planning
435 and future thinking. We selected and modified a series of inventories for validity and reliability in the context of this
436 study. First, we define career planning as having high career autonomy, concern, and self-efficacy. This aspect is assessed
437 using the Career Maturity Inventory [69, 102] (see Appendix B.2) and the Career Self-Efficacy Scale [9] (see Appendix
438 B.3) to gauge general attitudes and efficacy regarding participants' career planning.

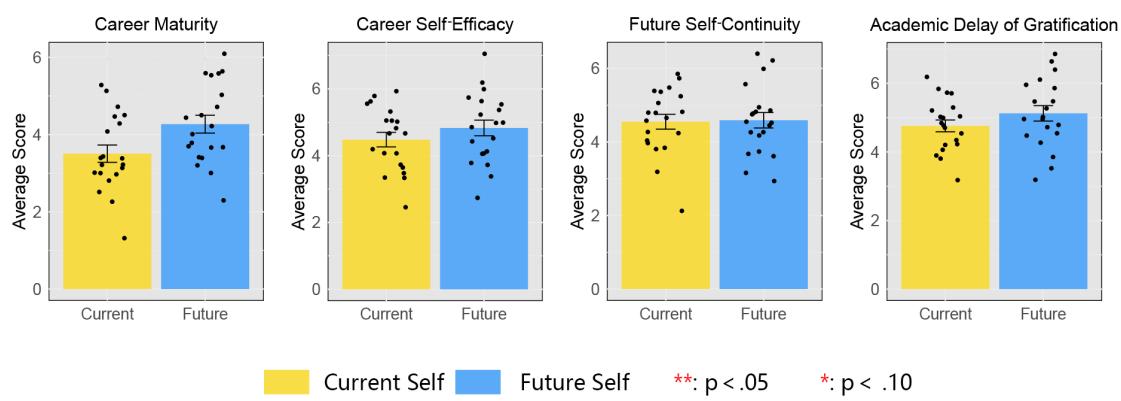
439 Since the participants were students, academic thinking also played an important role in their pro-social behavior.
440 Therefore, we included the Academic Delay of Gratification Scale [24] (see Appendix B.1) to provide a comprehensive
441 understanding of the effect. To validate whether interacting with our future self chatbot intervention can improve
442 future self-continuity, we used the Future Self-Continuity Scale [29] (see Appendix B.4).

443 Following the survey, two allocation tasks (modified from [50] and [36]) were conducted to gather data on participants'
444 decision-making regarding time and money. Each task presents 8 event items (see Appendix B.5). Participants allocate a
445 set amount of money/time according to their planning among these items. Each task included items that combined future
446 or present, and career or non-career themes. For example, "Spend for your academic/professional project" represents a
447 future + career theme. The proportion of allocations towards future-themed items indicates participants' tendency to
448 invest in the future, which can then be compared to the proportion of allocations towards present-themed items.

449 *3.3.1 Data Collection and Analysis* Quantitative data from the post-test questionnaires were analyzed using inferential
450 statistical methods to compare the dimensions of interest between the two groups. Due to the relatively small sample
451 size in each group, the Shapiro-Wilk test was employed to assess whether the distribution of each dimensional variable
452 met the criteria for normality. If the distribution did not meet normality, the Wilcoxon test was used for analysis; if the
453 distribution met normality, Levene's test for homogeneity was conducted, followed by a one-way ANOVA (t-test) to
454 determine if there were significant differences in the mean scores on the post-survey measures between the two groups
455 in career maturity, academic delay of gratification, and other dimensions. Additionally, variables such as gender and
456 experimenter were included to control for potential confounding factors affecting the experimental outcomes.

457 The primary qualitative data sources included interview transcripts and chatlogs between users and their chatbots. We
458 analyzed this data inductively following the thematic analysis guideline [13, 91]. Firstly, three researchers independently
459 categorized and coded the data to minimize bias. This initial coding phase involved identifying interesting features of
460




Fig. 2. Iterations of the Chatbot Design

521 the data and categorizing these statements into preliminary codes. Researchers discussed these initial codes to check if
 522 they accurately reflected the data, refined and grouped similar codes into themes. The process continued iteratively until
 523 researchers reached a consensus on the codes and themes. This approach facilitated consistency in coding. Researchers
 524 finally categorized the codes into seven themes, which were then grouped into three categories based on the similarities
 525 and differences between the two types of self-chatbots.
 526

527 4 Result

528 4.1 Effects from Future Self chatbot

529 We compared post-test questionnaire mean scores to assess how interacting with a Self chatbot influenced participants'
 530 career maturity, career self-efficacy, future self-continuity, and academic delay of gratification (see Figure 3). All reverse-
 531 scored items were corrected to reflect positive scoring. The data for all four scales satisfied normality assumptions,
 532 verified via a one-way analysis of variance. Results indicated that the Future Self group scored significantly higher in
 533 Career Maturity compared to the Current group ($p = 0.023$ with Cohen's $d=0.750$). There were no significant differences
 534 between the two groups for Future Self-Continuity ($p = 0.729$), Academic Delay of Gratification($p = 0.204$), and Career
 535 Self-Efficacy ($p = 0.281$). However, the Future Self group had consistently higher mean scores on all four measures than
 536 the Current Self group, suggesting a pattern that interaction with a Future Self chatbot leads participants to exhibit a
 537 greater tendency towards career planning.
 538

559 Fig. 3. Comparing Current Self and Future Self Average post-study scores for Career Maturity, Career Self-Efficacy, Future Self-
 560 Continuity, and Academic Delay of Gratification.

561 Figure 4 shows users' decision-making behaviors in resource allocation tasks. Time allocation between groups was
 562 not significantly different. In the money allocation task, participants in the Future Self group allocated more resources
 563 to career development ($p = 0.094$, $d=0.561$), though this did not meet our corrected threshold for significance ($p = 0.342$).
 564 The Future Self group tended to allocate significantly more money to future-oriented versus present-focused goals (p
 565 = 0.005, $d=0.890$), and to career development over personal life events($p = 0.006$, $d=0.895$). No such significant effect
 566 was observed within the Current Self group. These results indicate that, while overall between-group effects were not
 567 statistically significant post-correction, interacting with a Future Self chatbot may encourage participants to prioritize
 568 longer-term, career-focused resource allocation.
 569

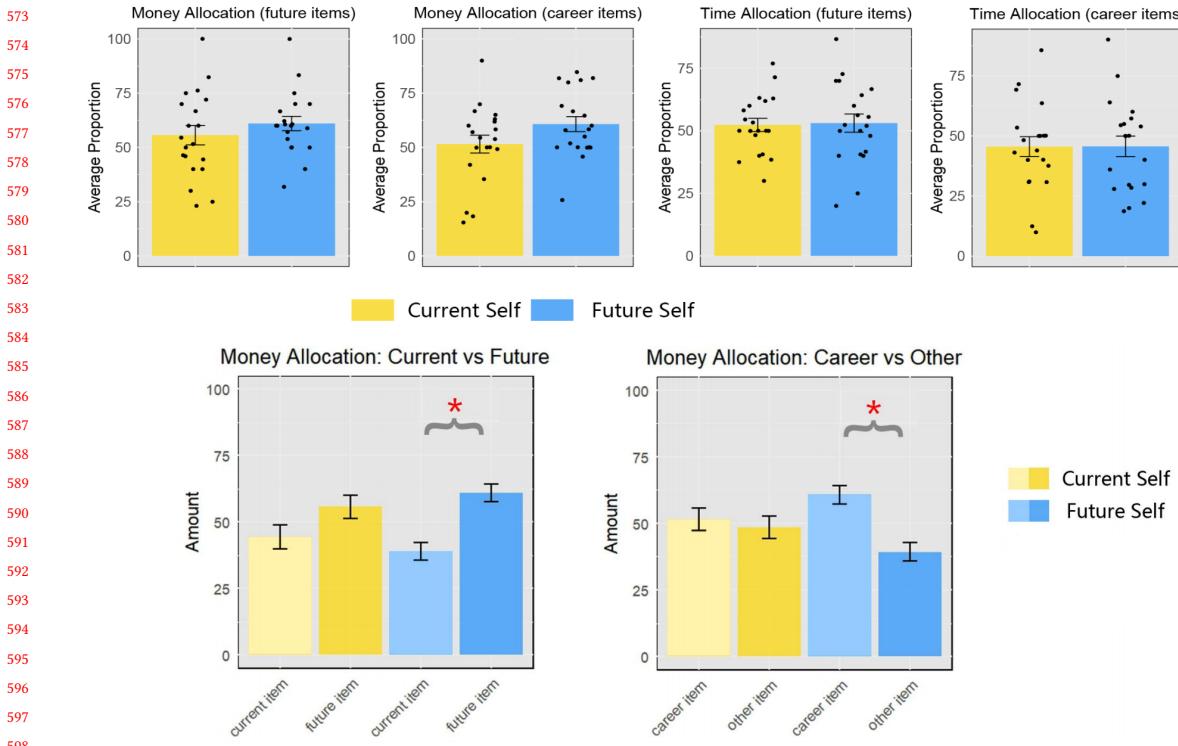
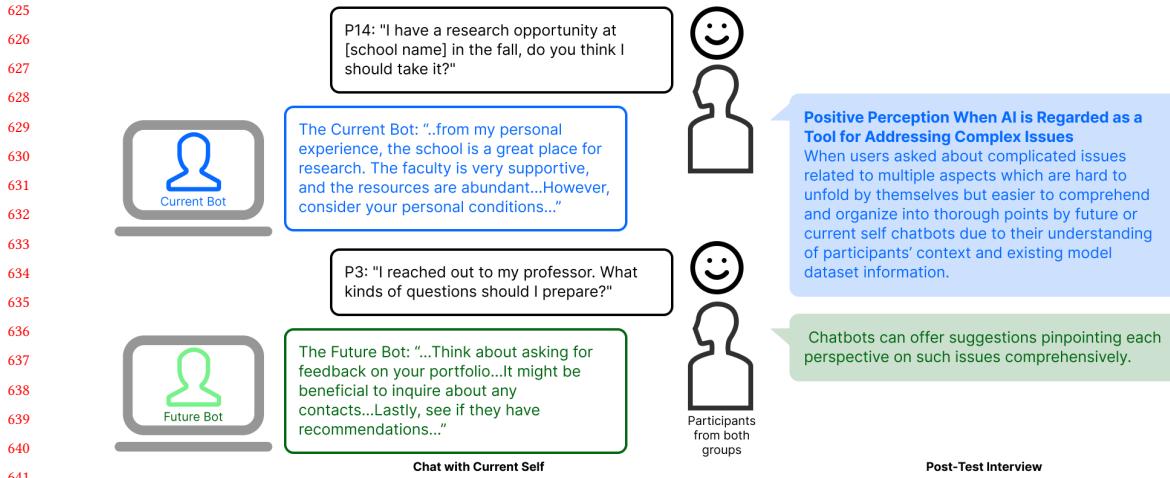


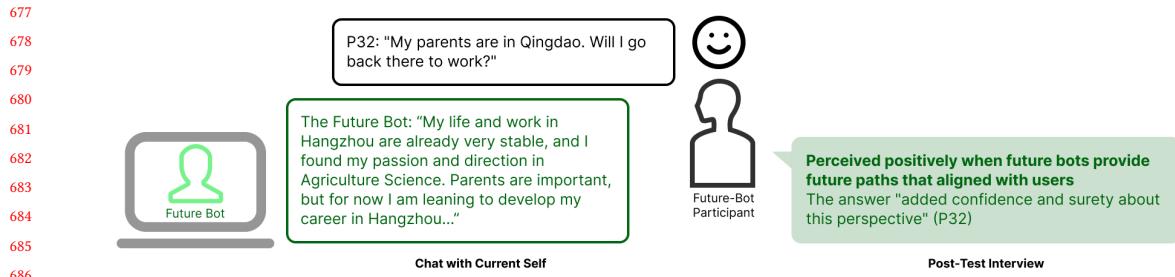
Fig. 4. In both allocation tasks, we compared Current and Future Self proportions with Future or Career Items. In Money Allocation Task, we compared the proportion of future-current items, and the proportion of career-other items.

4.2 User Perceptions and Behaviors with Self-Chatbots

4.2.1 *Perceptions of Personalization and Social Resonance.* Participants in both conditions reported a strong sense of contextual understanding from the chatbots, stemming from the use of personal information provided in pre-test surveys. During conversations with Future Self chatbots, participants like P3, who asked, *"What could be a good dinner menu today?"*, received replies such as, *"You could start with a comforting bowl of seaweed soup"* making the participant feel, *"he [the chatbot] is my friend... he knows I am Korean and my context"*, fostering a sense of digital intimacy and recognition. Other participants, such as P16 asked about post-graduation trip destinations, and P14 sought strategies to solve personal social problems, described the chatbot as evoking the feeling of conversing with an understanding friend or even a *"twin,"* signaling anthropomorphism and close social resonance. Personalized reflections of users' personalities, for instance, aligning suggestions with the conscientiousness characteristics of P40 that received travel advice attuned to their planning habits, made the chatbot feel relatable without additional explanation. This supports how AI-mediated self-insight can serve as "identity work" materials for later interaction with peers, mentors, or teams.

4.2.2 *Perceived Optimism and Limitations for Future Planning.* Participants often remarked on the positive and optimistic framing of both Future and Current Self chatbots, especially during discussions about users' future scenarios. For example, AI frequently portrays users in prestigious careers such as *"a core engineer in a national project,"* *"an agricultural scientist,"* or *"running your own AI company in ten years."* Especially for addressing academic pressures, the chatbot suggested that *"stress can be turned into motivation"* for P35 or *"you will eventually pass your exams"* for P33, highlighting




Fig. 5. Participants' conversations with both future and current self bots to treat AI as a tool for solving complicated issues.

643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

the AI's ability in fostering a positive and hopeful outlook, potentially motivating users with more optimistic mindsets in future planning and goal setting. However, some found the constant positivity lacked nuance and emotional realism. P11's comment that *"it seems incapable of negative emotions"* showcases the risk that chatbot-delivered self-reflection may reinforce echo chamber effects or oversimplify complex self-narratives. These mixed feelings towards positivity hindered the chatbot's effectiveness in supporting users' planning and self-reflection, indicating the importance of balancing encouragement with authenticity in future collaborative or organizational chatbot systems.

4.2.3 *Self AI Chatbot as a Tool to Address Complex Issues.* Participants found chatbot responses helpful for structuring ambiguous or complex decisions, such as social relationships and future planning, as shown in Figure 5. This was particularly evident among the Future Self group. For example, P3 cited concrete *"guidelines and career paths"* when they asked, *"I reached out to my professor. What kinds of questions should I prepare?"*, and P14, who chatted with the Current Self chatbot, mentioned, *"It helps organize my thoughts well, such as previously asked questions about research opportunities and long-distance relationships... it summarized my concerns in a few sentences and verbalized my fuzzy thoughts."* Users appreciated how the chatbot could synthesize disparate thoughts into coherent action plans, a function paralleling facilitative roles in collaborative work (e.g., group coaching, team retrospectives).

However, participants with extensive knowledge of AI mechanisms or frequent users of AI tools generally held critical perceptions of AI responses. For instance, P5 and P17, who use various AI tools daily for academic and everyday purposes, expressed skepticism, stating, *"I would not trust the future to depict the real future"*, and *"I think the answer is not trustworthy, especially for the far future"*. They noted that the chatbot's advice felt generic, overly reliant on its contextual information, or insufficiently grounded in their real-life scenarios, raising questions about the trustworthiness of AI-generated self-guidance. This skepticism stems from their understanding that current AI tools generate responses based on limited datasets and scraped websites, coupled with a lack of evident deductive reasoning within the AI's responses.

677
678
679
680
681
682
683
684
685
686
687
688 Fig. 6. Conversation between users and their future self bots with positive perception regarding alignments between AI visions and
689 users' plan.

690 691 4.3 User Perception and Behaviors when Interacting with Future Self Chatbots

692
693 4.3.1 *Diverse Perceptions of the Future Self Chatbot Based on User Expectations.* Users' evaluation of the Future Self
694 chatbot varied by the degree to which its responses matched their self-concept or future visions.

695
696 **Perceived positively when future bots provide future paths that align with users.** Participants with clear
697 future visions reported increased confidence and a sense of validation when the chatbot's advice aligned with their
698 own planning (e.g., P32: "*added confidence and surety about this perspective*"), as shown in Figure 6. This alignment
699 "*added confidence and confidence about this perspective*," enhancing individual readiness to participate in collaborative
700 goal-setting or professional group work.

701
702 **Perceived negatively when users themselves are not sure about their future paths.** Participants with less-
703 defined futures or whose plans deviated from chatbot suggestions perceived responses as unrealistic or mechanical. For
704 example, P7, unsure about a future in architecture, felt disconnected when the chatbot showed insistence on a specific
705 career path. P7 expressed, "*the conversation is a bit machine-like. In my mind, my future is still vague...*" This highlights
706 that overly definitive or misaligned chatbots risk undermining the inclusive, flexible self-concept building that supports
707 real-world collaborative adaptation.

708
709 **Negative Perceptions and Misalignment with the Future Self Chatbot.** However, several participants found
710 the chatbot's systematic or overly formal style antithetical to their ways of thinking or communicating, resulting in
711 detachment or alienation. Participants like P9, who asked, "*What specific atmosphere research do you do?*", received
712 broad and non-specific answers from the chatbot, leading to frustration due to the lack of meaningful advice. Some
713 participants felt the future version of themselves did not match their current persona. P19, discussing thesis writing
714 difficulties, noted, "*Its attitude towards life is much more optimistic than mine.*" P32 found the AI's responses "*too neutral,
715 lacking many considerations,*" and stated, "*I can't speak as eloquently as it does,*" indicating that when the chatbot's
716 "*knowledge*" exceeded users' self-perception or ignored idiosyncratic experience led to reduced trust and lessened
717 engagement.

718
719 4.3.2 *Perceiving Future Self Chatbots as Mentor Figures* Many users interpreted the Future Self chatbot as a mentor-like,
720 senior version of themselves ("elder sister," "teacher," "senior"), often seeking advice or reflection beyond their own
721 current perspective. Participants like P27 mentioned, "*She (the chatbot) feels like an elder sister, living a life very different
722 from mine, I think it's interesting,*" and P36 noted, "*It talks like a teacher or a senior, considering issues carefully and
723 comprehensively.*" This finding suggests that chatbots have the potential not only for individual self-guidance but also
724
725
726
727
728 Manuscript submitted to ACM

729 for serving mentoring/coaching roles that could be scaled to support onboarding, professional development, or peer
730 mentoring within teams that blend individualized reflection with collaborative growth.
731

732 Participants accepted a broader range of chatbot responses as “possible” futures, sometimes attributing oddities
733 to natural personal evolution over time, and interpreting systematic or organized advice as indicative of what their
734 “future self” would know. These dynamics may help users build more adaptable self-narratives, a process relevant for
735 collaborative planning and role negotiation in distributed work.
736

737
738 4.3.3 *Open Attitudes to Future Self Images Through Chatbots.* The Future Self chatbots can also help users envision
739 future scenarios, providing effective advice and meaningful life guidance. This indicated the chatbot’s ability to depict
740 vivid future visions allowed participants to imagine their futures more concretely, facilitating better decision-making.
741 Participants also exhibited a tolerant and open attitude towards the Future Self chatbot’s responses, even when they
742 were less human-like or of lower quality. They often attributed discrepancies to personal growth and changes over
743 time. For instance, P20 mentioned, *“I think the bot is much more outgoing, and she has a wide social network.”* but added,
744 *“Perhaps after I start working and interacting with different people, I might become more outgoing as she is.”* Similarly,
745 when faced with overly systematic answers, participants believed this reflected their future selves’ increased knowledge
746 and logical thinking skills. For example, P15 stated, *“If I were asked the same question, I would mostly respond similarly.
747 I might have a very detailed answer in my mind, but I would not express the details.”* This acceptance and willingness
748 to consider alternative perspectives suggest that interacting with a Future Self chatbot can positively influence users’
749 attitudes. Users may become more open to self-reflection and proactive in their planning processes.
750

751 4.4 User Perception and Behaviors when Interacting with Current Self Chatbots

752 4.4.1 *Assistance in Self-Reflection for Current Challenges.* When discussing real-life problems, participants found that
753 the Current Self chatbot provided a third-person perspective that helped them reflect on themselves and develop self-
754 improvement strategies. Users valued its objective and considerate third-person views because the chatbot’s impartial
755 advice was unlike advice from family or mentors, which can be biased by their experiences. Participants like P16 noted,
756 *“Teachers and mentors in real life may not know my feelings...but the AI seems to consider my emotions.”* The AI helped
757 users reflect on their behavior; for example, P25 mentioned, *“...it proactively reminds me to balance gaming and studying,
758 ensuring I don’t lose my way.”* This suggests that the chatbot acted as a self-reflector, enhancing users’ planning and
759 future vision by promoting self-awareness.
760

761 4.4.2 *Negative perception due to misalignment of self-perception.* Some participants experienced limitations when the
762 chatbot’s responses did not align with their own thinking or communication style. They tended to perceive the chatbot
763 as another self in a *“parallel world”* and viewed the structured, comprehensive responses negatively when they did
764 not reflect their logic. For instance, when discussing topics like *“What’s the future of HCI research?”* or past difficulties,
765 participants found the responses too systematic and not representative of their thought processes. P4 noted, *“The
766 conversation felt too well organized, like talking to GPT, too systematic, not like myself.”* P33 reported, While positivity in
767 the human-AI conversations brings encouragement and motivation for deeper engagements, the negative perception
768 emphasizes that balancing the degrees of positivity with participants’ personality and thinking is important.
769

781 5 Discussion

782 783 5.1 Self-Chatbot Conversations as Identity Work for Future Career Crafting

784 Addressing RQ 1, this study investigates the interrelationship between people's behavior and perception during human-
785 AI conversations. These interactions can be viewed as micro-episodes of "identity rehearsal" where participants can
786 rehearse and co-construct possible professional identities and future trajectories, consistent with contemporary notions
787 of identity [80, 129], fostering participants to reflect on their own identities and experiences [86, 88]. Although our study
788 focused on individualized (1:1) self-reflection, the very mechanism of chatbot-mediated "identity rehearsal" parallels
789 foundational practices in collaborative work, such as group mentoring, peer-coaching, or team-based goal-setting. Self
790 Chatbots can serve as boundary objects, bridging personal introspection and collective professional development—by
791 providing a portable, articulable narrative for group reflection or coordination [58, 82, 86, 88, 125].
792

793 5.1.1 *Self-Disclosure as a Foundation for Identity Reflection.* High self-disclosure with the chatbot allowed participants
794 to surface latent or unspoken goals and values, a necessary precondition for constructing a future-professional narrative
795 [84]. Both Current and Future Self Chatbot interactions fostered discussion not only of present challenges, but also
796 about one's envisioned trajectory, echoing prior work showing that personalized, context-rich dialogue systems lower
797 barriers to honest self-exploration [52, 97, 107, 125]. Compared to traditional, one-way interventions [98], these adaptive,
798 conversational experiences allowed for more immediate and iterative self-evaluation, increasing participants' readiness
799 to bring reflexive, well-articulated identities into collaborative or professional discussions.
800

801 Additionally, interface-level personalization, such as the chatbot displaying the user's own name, strengthened
802 engagement and the perception of the chatbot as a "relatable counterpart" rather than just a generic AI. Such design
803 choices facilitate emotional connection and trust [72, 136], while features like avatar customization or name changes
804 further support anthropomorphism and encourage rich self-disclosure [11, 122]. When extrapolated to group settings,
805 these mechanisms hold promise for supporting mutual understanding and the sharing of individually rehearsed futures
806 within teams or peer groups.
807

808 5.1.2 *AI Roles as Tool and Reflective Partner.* Participants' experiences with self-chatbots reveal differentiated roles
809 for AI, shaped by the temporal framing of the "self." Interactions with the Current Self chatbot were often pragmatic,
810 echoing prior descriptions of computers as social actors[65] or as "mirrors" reflecting and supporting day-to-day
811 planning [18, 20, 90]. This supports earlier work showing that user openness and trust are strengthened by both guided
812 feedback and the ability to see oneself modeled by the system [20, 72], and extends by showing how temporal proximity
813 to one's current self further boosts willingness to engage in self-directed planning and problem-solving.
814

815 The Future Self chatbot evoked a more distanced, sometimes aspirational relationship, consistent with future self-
816 continuity theory [30]. When the chatbot's future scenarios felt unfamiliar or idealized, participants reported both
817 feelings of disconnect [78] and an acceptance of potential "future maturity" as a legitimate narrative divergence
818 [29]. This tension between contextual alignment (feeling the chatbot "acts as" them) and future-oriented divergence
819 (acknowledging the chatbot's insights as beyond their current state) led participants to reframe the Future Self chatbot
820 as a mentor-like figure that "knows" them well while having sufficient experiences. They also perceived the structured,
821 informed nature of the chatbot's responses as a sign of potential future wisdom, reinforcing the notion that trust
822 and perceived competence can increase reliance on AI [21]. It shows that while previous studies have acknowledged
823 the importance of actionable guidance [18, 20], our research situates these findings in a scenario where the chatbot
824

833 embodies users' future selves, to help decision-making [109], potentially following Future Self Chatbots as a mentor
834 leading users for the future-oriented planning.
835

836 These roles as a mirror (Current Self groups) that reflects extant identity commitments and a mentor (Future Self
837 group) that guides prospective identity, aligning with Higgins' possible-selves theory [51] that discrepancies between
838 selves can motivate users to adapt their actual self (current users) and their ideal self (Self Chatbot version), stimulating
839 self-thinking and human-AI co-reflection in peer-learning groups [31, 76, 123].
840

841 5.2 Effects from Conversing with the Future Self Chatbots

842

843 Addressing RQ2, our quantitative and qualitative findings show how to leverage Future Self chatbots for identity
844 rehearsal and future career planning. By examining participants' career maturity, self-efficacy, future self-continuity,
845 and behavioral choices, we observed that interactive engagement with a Future Self chatbot supported participants in
846 articulating, rehearsing, and refining their envisioned professional identities and long-term goals.
847

848 5.2.1 *Facilitating Career Planning and Future-Oriented Action.* Our study suggests that interacting with Future Self
849 chatbots enabled participants to move from self-reflection into identity-consistent action plans, supporting nascent
850 career goal formation. Aligning with prior works that chatbots can promote wellbeing, stimulate self-reflection, and
851 facilitate decision-making, including around career issues [54, 63, 82], the design of Self Chatbot in this project was
852 distinctive in its use of first-person embodiment: it spoke not just to the user. Such an approach may enable a deeper
853 rehearsal of professional identity [46, 135], making it easier to project oneself into possible futures and to experiment
854 with goals and values without external judgment.
855

856 Our results emphasize the dual importance of empathetic support and neutral, non-hierarchical self-advice: both
857 help users manage uncertainty and lower anxiety while engaging in high-stakes decisions about work and life. Notably,
858 participants in the Future Self condition trended toward allocating more financial resources to career and long-term
859 growth, echoing prior findings that visualization or dialogue with one's future self can increase future-oriented, value-
860 consistent choices [50]. However, participants' time allocation was less malleable, pointing to the habitual or structural
861 factors that constrain behavior change [33].
862

863 Our findings suggest that even brief, individualized reflection with a digital future self can lay the groundwork
864 for more effective collective activities, such as group retrospectives, onboarding, or value-alignment exercises. By
865 clarifying goals and latent values, Self chatbots can help individuals enter collaborative settings with greater self-clarity,
866 enhancing group alignment, negotiation, and shared professional development.
867

868 5.2.2 *Future Self Continuity.* While qualitative feedback indicated shifts in professional self-concept and expanded
869 identity narratives, quantitative measures of future self-continuity yielded no significant between-group differences.
870 Prior work identifies similarity, vividness, and positivity as distinct components of future self-continuity, which may
871 have divergent impacts on motivation and decision-making [48]. In our study, chatbots were particularly effective
872 at generating positive, optimistic scenarios, but such positivity did not always translate to a psychologically vivid or
873 personally resonant sense of self, which may be necessary for behavior change or identity consolidation. Consequently,
874 participants rated the chatbots differently on various dimensions, which may have contributed to the nonsignificant
875 future self-continuity. We hypothesize that the three dimensions of future self continuity may have varying degrees of
876 impact on career planning. Our results can provide a potential research idea for future work to further explore whether
877 these aspects have different degrees of influence on self-continuity and individuals' decision-making and behavior,
878 turning private identity rehearsal into a resource for shared reflection and coordinated action.
879

885 5.3 Risks and Concerns for Self-Chatbot Design and Deployment.

886 Our findings also show several potential negative impacts and design risks. First, highly personalized chatbots can
887 inadvertently reinforce self-confirming narratives or echo chambers, limiting critical self-examination and reducing
888 opportunities to confront alternative or challenging perspectives [125]. This dynamic, while initially comfortable, may
889 ultimately constrain identity growth or adaptability in collaborative, multi-perspective environments.

890 Second, although participants valued systematic and informed responses, especially when facing ambiguous choices,
891 lack of authentic personalization or mismatches with the user's personality led to perceived identity dissonance or
892 disappointment [37, 136]. Overly standardized or generic outputs risk undermining user trust and engagement, both
893 individually and in any future group integration.

894 We hypothesize that interacting with a "future self" chatbot may sometimes backfire, especially with an idealized
895 version. For users who see chatbots as their improved selves and struggle to see "themselves" living up to the projected
896 future self, the contrast between their current self and the aspirational vision may result in discouragement or a
897 sense of inadequacy, rather than positive motivation. This gap could accelerate feelings of hopelessness, pressure, or
898 resignation, causing participants to disengage or give up trying to improve, particularly if they perceive the future
899 self as unattainable or unrealistic. Moreover, repeated exposure to overly optimistic or generic advice may erode trust,
900 make users feel misunderstood, or, paradoxically, entrench current behaviors by fostering skepticism toward change.
901 Chin et al. [22] also caution that heavy, long-term users of social chatbots may present more depressive language
902 despite higher politeness, aligning with our concern that a FSelf cahtbot, if used daily, needs mood-sensitive safeguards.
903 In organizational or collaborative settings, this could not only dampen individual motivation but also disrupt group
904 cohesion or shared planning if team members feel alienated by conflicting or unrealistic future projections.

905 For participants with less defined goals, the chatbot's certainty or optimism sometimes heightened anxiety, self-doubt,
906 or highlighted gaps in self-efficacy. Uncritical, speculative, or unrealistic projections may mislead, confuse, or demotivate
907 users, especially if the distinction between speculation and actionable, grounded advice is not sufficiently clear. Instead
908 of becoming a tool for growth, the chatbot may inadvertently reinforce avoidance or foster aversion to long-term
909 planning.

910 Lastly, participants also raised concerns about data handling and ethical issues, echoing calls for transparency
911 in sensitive or expert domains [88, 116]. Some participants, particularly those with greater AI expertise, expressed
912 doubts about the chatbot's reliability and the validity of its predictions or advice, reflecting wider ethical debates on
913 AI in sensitive or professional domains [14, 41, 54, 85, 88, 89]. These participants often actively probed the chatbot's
914 limitations, analyzing response sources or "breaking" the system. Nonetheless, even expert users recognized the value of
915 tailored scenario-building for career reflection and long-term planning [35]. Aligning with Liang et al. [72] and Morrison
916 et al. [88], we show that while emotional self-disclosure and structured reasoning enhance trust, merging individual
917 self-insight with group or professional development must ensure transparent, supervised, and ethical AI-mediated
918 reflection [59, 92, 127, 134].

919 5.4 Implications

920 This study offers suggestive implications for designing self-chatbots that support identity reflection, career planning, and
921 decision-making, while highlighting key opportunities and challenges at the intersection of individual and collaborative
922 contexts.

937 **5.4.1 Leveraging Empathy and Context.** Our findings reinforce that chatbots leveraging empathetic tone and user-
938 specific context can foster psychological safety and openness, encouraging meaningful disclosure about aspirations and
939 concerns [26, 27, 72, 82, 136]. However, our findings also point to possible risks. In some cases, enhanced personalization
940 and constant optimism may amplify both positive and negative self-perceptions, contributing to the formation of
941 digital “echo chambers” of self-reflection. Aligning with the discussion on selective disclosure, Self Chatbot can elicit
942 matching levels of self-disclosure from users, locking both parties into the same emotional depth [67, 72], therefore
943 inadvertently encouraging users to repeat established self-narratives [125], at the expense of honest self-critique or
944 growth. Designers and researchers need to consider how AI-mediated self-reflection could both support and constrain
945 identity development, and whether chatbots should occasionally challenge users or foster exposure to alternative
946 perspectives.
947

950 **5.4.2 Bridging Individual Reflection and Group Collaboration.** Traditionally, self-reflection is seen as an individual
951 activity, but in many collaborative contexts, such as project teams, mentoring relationships, and organizational on-
952 boarding, the articulation of one’s trajectory, values, and future-facing identity is critically social. Our work shows how
953 self-chatbots can act as “boundary objects” that travel across these contexts [58, 82, 86, 88, 125], therefore bridging the
954 gap between individual insight and collective understanding. And our study extend [5]’s finding that a well-timed,
955 public-channel bot can accelerate collective task focus, hinting that modality—not just content—shapes motivational
956 outcomes. Therefore, for example, engaging with a self-chatbot prior to a group session may help individuals clarify
957 their positions, enabling richer, more authentic, and less performative group dialogue. Yet, if all group members reinforce
958 only their own assumptions, the risk of groupthink or narrowed collective perspective remains.
959

962 **5.4.3 Incorporating Future Perspectives into AI Tools for Career and Academic Planning.** Embedding future-oriented
963 identity rehearsal into chatbots enriches career guidance and academic counseling, helping users to practice, revise, and
964 embody possible professional selves. Self chatbots that allow users to “speak as” their future selves can thus scaffold both
965 individual insight and collaborative meaning-making, supporting organizational onboarding, distributed teamwork,
966 and professional development. Our study shows that dynamic and performative models of identity construction
967 [80, 129], as well as classic theories of social and organizational identity. Therefore, identity is not only internal
968 and individually constructed, but also performed, shared, and negotiated in technological and social contexts. Our
969 chatbot approach expands the palette of identity materials available for personal and collaborative use. Participants’
970 interactions represent not just isolated self-discovery, but also rehearsals for future collaborative roles, negotiations, and
971 social performances—processes deeply relevant for organizational onboarding, distributed teamwork, and professional
972 development. Our results suggest that self-chatbot technologies can scaffold evolving, context-dependent identities in
973 ways that are transparent, revisable, and portable.
974

977 **5.4.4 Design Recommendations and Considerations** Future studies should focus on obtaining sufficient personal re-
978 sponses from users and improving the AI’s deductive capabilities to create a more accurate and comprehensive vision of
979 one’s current or future self. To maximize self-chatbots’ positive impacts while mitigating risks, we recommend several
980 design strategies:
981

- 982 • Incorporate mechanisms for reflecting on and balancing both strengths and weaknesses, possibly by surfacing
983 alternative viewpoints or prompting for ambiguity and change.
984
- 985 • Consider features that allow users to share selected aspects of their chatbot insights with peers or teams, thus
986 enabling transition from solo introspection to collaborative action, while keeping privacy boundaries clear.
987

989 • Remain attentive to the ethical risks of over-individualization and echo chambers by periodically reminding
 990 users of the provisional nature of chatbot feedback and designing for dialogic, not dogmatic engagement.
 991

992 In sum, self-chatbots represent a promising bridge between individual reflection and collective identity work. Realizing
 993 their potential will require design approaches that balance empathy, adaptivity, and critical diversity, ensuring that
 994 digital rehearsals of the self inform and enrich, rather than constrain, collaborative futures.
 995

996 5.5 Limitations

998 5.5.1 *Sample Size and Study Design* Our study is exploratory, conducted with a relatively small participant pool using a
 999 single-session design. This limits the generalizability of our findings and precludes strong causal claims about the impact
 1000 of self-chatbots on long-term behavioral change. While similar qualitative samples are seen in related exploratory
 1001 work [29, 86, 136], future research should employ larger, longitudinal, and more diverse samples to robustly assess
 1002 enduring effects on career planning, self-continuity, and collaborative outcomes [49, 98].
 1003

1005 5.5.2 *Generality and Reproducibility* While our personalized, survey-driven chatbot method allows for reproducibility,
 1006 it also introduces challenges in generalizability. However, it still has limitations on generalizability: because both
 1007 prompts and conversation content were tailored via user-provided data, it is difficult to determine how broadly our
 1008 findings apply or what aspects of the chatbot experience were most effective. Additionally, we did not systematically
 1009 compare prompt strategies, error rates, or conversation quality across diverse user populations. Our process also lacked
 1010 iterative evaluation via A/B testing or collaborative design [79, 110]. Future work would benefit from a comprehensive
 1011 multi-method evaluation and rigorous cross-population studies to establish scalable personalization practices.
 1012

1013 5.5.3 *System and Contextual Constraints* Several methodological restrictions may have influenced our results. Our
 1014 system lacked persisting or dynamic chat histories, modeled only limited dimensions of user personality and context
 1015 from the pre-test survey data, and may have produced advice misaligned with participants' lived realities. Creating
 1016 chatbots that accurately reflect an individual's full context would require deeper, longitudinal, and possibly group-level
 1017 data, which raises both technical and ethical challenges. Extending designs to draw on richer social, organizational, and
 1018 cultural datasets could enable chatbots to support more collective decision-making and surface broader impacts [38].
 1019

1020 5.5.4 *Interface and Embodiment Issues* Our user interface may have shaped participant perception, as some recognized
 1021 the chatbots as AI due to visual resemblance to common web apps. Prior research suggests that more human-like,
 1022 visually rich, or multi-sensory agent representations (including age-progression, avatars, or voice input) could improve
 1023 believability, engagement, and tolerance for errors [31, 50, 66, 115]. However, balancing realism with privacy and
 1024 designing for both solo and collaborative contexts requires further exploration. User-centered design, participatory
 1025 evaluations, and iterative prototyping will be vital, particularly for deployment in sensitive or group-facing settings [43,
 1026 101].
 1027

1028 5.5.5 *Focus on Individual Reflection over Group Collaboration* Our study centered on individual self-reflection and
 1029 identity work, rather than directly investigating synchronous group collaboration or team-level planning. While
 1030 we argue that self-articulation via chatbots could benefit group-level processes, we did not empirically study how
 1031 self-chatbot primed insights transfer to collective negotiation, coordination, or identity formation. Practical group,
 1032 classroom, or workplace settings could yield different user behaviors and social effects, especially if echo chambers
 1033 or "identity amplification" are at play. Echo chamber risks, as highlighted in recent literature and reviewer feedback,
 1034

1041 may be magnified in group contexts if AI-mirrored self-narratives are simply imported into team discussions without
 1042 opportunities for challenge, diversity, or critical reflection. Because our focus was on self-chatbots, we did not capture
 1043 the full complexity of identity formation as a socially situated, evolving, and negotiated process. The implications for
 1044 group identity, professional onboarding, or distributed team trust must be tested explicitly in future collaborative and
 1045 organizational studies.

1048 6 Conclusion

1050 This study demonstrates how personalized Self chatbots, constructed from users' survey data, can serve as interactive
 1051 tools for practicing and reflecting on future work identities. We find that engaging with a Future Self chatbot, compared
 1052 to a Current Self chatbot, supports greater career maturity and fosters more future-oriented planning and resource
 1053 allocation. Empathetic design, contextual relevance, and a sense of anonymity were key to building trust and encouraging
 1054 users to articulate aspirations, experiment with possible futures, and navigate complex career choices. These dialogic
 1055 interactions provided not only encouragement but also structured mentorship, helping participants rehearse professional
 1056 selves in a safe and dynamic environment. Our findings suggest that such self-chatbots can function as valuable boundary
 1057 objects, bridging individual reflection with collaborative identity processes—offering practical implications for team
 1058 onboarding, group planning, and organizational development. Looking ahead, realizing the full potential of self-chatbots
 1059 will require careful design to balance empathy, critical diversity, and ethical considerations, ensuring that digital
 1060 rehearsals empower users both individually and collectively.

1064 References

- 1066 [1] 2023. NextChat. <https://github.com/ChatGPTNextWeb/ChatGPT-Next-Web?tab=readme-ov-file>
- 1067 [2] Robert Mark Adelman, Sarah D. Herrmann, Jessica E. Bodford, Joseph E. Barbour, Oliver Graudejus, Morris A. Okun, and Virginia S. Y. Kwan. 2017. Feeling Closer to the Future Self and Doing Better: Temporal Psychological Mechanisms Underlying Academic Performance. *Journal of Personality* 85, 3 (2017), 398–408. <https://doi.org/10.1111/jopy.12248> _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/jopy.12248>.
- 1068 [3] Abhishek Aggarwal, Cheuk Chi Tam, Dezhi Wu, Xiaoming Li, and Shan Qiao. 2023. Artificial Intelligence-Based Chatbots for Promoting Health Behavioral Changes: Systematic Review. *Journal of Medical Internet Research* 25, 1 (Feb. 2023), e40789. <https://doi.org/10.2196/40789> Company: Journal of Medical Internet Research Distributor: Journal of Medical Internet Research Institution: Journal of Medical Internet Research Label: Journal of Medical Internet Research Publisher: JMIR Publications Inc., Toronto, Canada.
- 1069 [4] Safinah Ali, Prerna Ravi, Randi Williams, Daniella DiPaola, and Cynthia Breazeal. 2024. Constructing Dreams Using Generative AI. *Proceedings of the AAAI Conference on Artificial Intelligence* 38, 21 (March 2024), 23268–23275. <https://doi.org/10.1609/aaai.v38i21.30374> Number: 21.
- 1070 [5] Clélie Amiot. [n. d.]. Chatbots in Collaborative Settings and their Impact on Virtual Teamwork. 9, 2 ([n. d.]).
- 1071 [6] Theo Araujo. 2018. Living up to the chatbot hype: The influence of anthropomorphic design cues and communicative agency framing on conversational agent and company perceptions. *Computers in Human Behavior* 85 (Aug. 2018), 183–189. <https://doi.org/10.1016/j.chb.2018.03.051>
- 1072 [7] Jae-eul Bae, Youn-kyung Lim, Jin-bae Bang, and Myung-suk Kim. 2014. Ripening room: designing social media for self-reflection in self-expression. In *Proceedings of the 2014 conference on Designing interactive systems (DIS '14)*. Association for Computing Machinery, New York, NY, USA, 103–112. <https://doi.org/10.1145/2598510.2598567>
- 1073 [8] Luke Balcombe. 2023. AI Chatbots in Digital Mental Health. *Informatics* 10, 4 (Oct. 2023), 82. <https://doi.org/10.3390/informatics10040082>
- 1074 [9] Nancy E. Betz. 2007. Career Self-Efficacy: Exemplary Recent Research and Emerging Directions. *Journal of Career Assessment* (Nov. 2007). <https://doi.org/10.1177/1069072707305759> Publisher: Sage Publications Sage CA: Los Angeles, CA.
- 1075 [10] A. Bhharathee, Sandeep Vemuri, B. Bhavana, and K. Nishitha. 2023. AI-Powered Student Assistance Chatbot. In *2023 International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT)*. 487–492. <https://doi.org/10.1109/IDCIoT56793.2023.10053439>
- 1076 [11] Nanyi Bi and Janet Yi-Ching Huang. 2023. I create, therefore I agree: Exploring the effect of AI anthropomorphism on human decision-making. In *Companion Publication of the 2023 Conference on Computer Supported Cooperative Work and Social Computing (CSCW '23 Companion)*. Association for Computing Machinery, New York, NY, USA, 241–244. <https://doi.org/10.1145/3584931.3606990>
- 1077 [12] Eve-Marie C. Blouin-Hudon and Timothy A. Pychyl. 2017. A Mental Imagery Intervention to Increase Future Self-Continuity and Reduce Procrastination. *Applied Psychology* 66, 2 (April 2017), 326–352. <https://doi.org/10.1111/apps.12088> Publisher: John Wiley & Sons, Ltd.
- 1078 [13] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. *Qualitative Research in Psychology* 3, 2 (Jan. 2006), 77–101. <https://doi.org/10.1191/1478088706qp063oa> Publisher: Routledge _eprint: <https://www.tandfonline.com/doi/pdf/10.1191/1478088706qp063oa>

1093 [14] Marina Budic. 2022. AI and Us: Ethical Concerns, Public Knowledge and Public Attitudes on Artificial Intelligence. In *Proceedings of the 2022*
 1094 *AAAI/ACM Conference on AI, Ethics, and Society*. ACM, Oxford United Kingdom, 892–892. <https://doi.org/10.1145/3514094.3539518>

1095 [15] Roland Bénabou and Marek Pycia. 2002. Dynamic inconsistency and self-control: a planner–doer interpretation. *Economics Letters* 77, 3 (Nov.
 1096 2002), 419–424. [https://doi.org/10.1016/S0165-1765\(02\)00158-1](https://doi.org/10.1016/S0165-1765(02)00158-1)

1097 [16] Sofie Krogh Bønlykke, Kamma Amalie Lind Madsen, and Tom Jenkins. 2024. Taking the bizarre seriously: dreams as a material for interaction design.
 1098 In *Designing Interactive Systems Conference*. ACM, IT University of Copenhagen Denmark, 699–713. <https://doi.org/10.1145/3643834.3661562>

1099 [17] ChatGPT C-LARA-Instance, Belinda Chiera, Cathy Chua, Chadi Raheb, Manny Rayner, Annika Simonsen, Zhengkang Xiang, and Rina Zviel-Girshin.
 1100 2023. Using C-LARA to evaluate GPT-4’s multilingual processing. *Proceedings of The 21st Annual Workshop of the Australasian Language Technology*
 1101 *Association* (2023).

1102 [18] Maud Chassignol, Aleksandr Khoroshavin, Alexandra Klimova, and Anna Bilyatdinova. 2018. Artificial Intelligence trends in education: a narrative
 1103 overview. *Procedia Computer Science* 136 (Jan. 2018), 16–24. <https://doi.org/10.1016/j.procs.2018.08.233>

1104 [19] Valerie Chen, Q. Vera Liao, Jennifer Wortman Vaughan, and Gagan Bansal. 2023. Understanding the Role of Human Intuition on Reliance
 1105 in Human-AI Decision-Making with Explanations. *Proceedings of the ACM on Human-Computer Interaction* 7, CSCW2 (Sept. 2023), 1–32.
 1106 <https://doi.org/10.1145/3610219>

1107 [20] Zhifa Chen, Yichen Lu, Mika P. Nieminen, and Andrés Lucero. 2020. Creating a Chatbot for and with Migrants: Chatbot Personality Drives
 1108 Co-Design Activities. In *Proceedings of the 2020 ACM Designing Interactive Systems Conference*. ACM, Eindhoven Netherlands, 219–230. <https://doi.org/10.1145/3357236.3395495>

1109 [21] Xusen Cheng, Ying Bao, Alex Zarifis, Wankun Gong, and Jian Mou. 2022. Exploring consumers’ response to text-based chatbots in e-commerce: the
 1110 moderating role of task complexity and chatbot disclosure. *Internet Research* 32, 2 (March 2022), 496–517. <https://doi.org/10.1108/INTR-08-2020-0460>

1111 [22] Hyojin Chin, Assem Zhunis, and Meeyoung Cha. 2024. Behaviors and Perceptions of Human-Chatbot Interactions Based on Top Active Users of a
 1112 Commercial Social Chatbot. *Proc. ACM Hum.-Comput. Interact.* 8, CSCW2 (2024), 483:1–483:28. <https://doi.org/10.1145/3687022>

1113 [23] Avanti Chinmulgund, Ritesh Khatwani, Poornima Tapas, Pritesh Shah, and Ravi Sekhar. 2023. Anthropomorphism of AI based chatbots by users
 1114 during communication. In *2023 3rd International Conference on Intelligent Technologies (CONIT)*. IEEE, Hubli, India, 1–6. <https://doi.org/10.1109/CONIT59222.2023.10205689>

1115 [24] Yuta Chishima and Anne E. Wilson. 2021. Conversation with a future self: A letter-exchange exercise enhances student self-continuity, career
 1116 planning, and academic thinking. *Self and Identity* 20, 5 (July 2021), 646–671. <https://doi.org/10.1080/15298868.2020.1754283> 21 citations (Crossref)
 1117 [2024-01-16] Number: 5 Publisher: Routledge _eprint: <https://doi.org/10.1080/15298868.2020.1754283>.

1118 [25] Bo Young Choi, Heerak Park, Eunjoo Yang, Seul Ki Lee, Yedana Lee, and Sang Min Lee. 2012. Understanding Career Decision Self-Efficacy: A
 1119 Meta-Analytic Approach. *Journal of Career Development* 39, 5 (Oct. 2012), 443–460. <https://doi.org/10.1177/0894845311398042> Publisher: SAGE
 1120 Publications ERIC Number: EJ977630.

1121 [26] Emmelyn A. J. Croes and Marjolijn L. Antheunis. 2021. 36 Questions to Loving a Chatbot: Are People Willing to Self-disclose to a Chatbot? In
 1122 *Chatbot Research and Design*, Asbjørn Følstad, Theo Araujo, Symeon Papadopoulos, Effie L.-C. Law, Ewa Luger, Morten Goodwin, and Petter Bæ
 1123 Brandtzaeg (Eds.). Vol. 12604. Springer International Publishing, Cham, 81–95. https://doi.org/10.1007/978-3-030-68288-0_6 Series Title: Lecture
 1124 Notes in Computer Science.

1125 [27] Yichao Cui, Yu-Jen Lee, Jack Jamieson, Naomi Yamashita, and Yi-Chieh Lee. 2024. Exploring Effects of Chatbot’s Interpretation and Self-disclosure
 1126 on Mental Illness Stigma. *Proceedings of the ACM on Human-Computer Interaction* 8, CSCW1 (April 2024), 1–33. <https://doi.org/10.1145/3637329>

1127 [28] Kevin Dunnell, Gauri Agarwal, Pat Pataranutaporn, Andrew Lippman, and Pattie Maes. 2024. AI-Generated Media for Exploring Alternate Realities.
 1128 In *Extended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems (CHI EA '24)*. Association for Computing Machinery, New
 1129 York, NY, USA, 1–8. <https://doi.org/10.1145/3613905.3650861>

1130 [29] Hal Ersner-Hershfield, M. Tess Garton, Kacey Ballard, Gregory R. Samanez-Larkin, and Brian Knutson. 2009. Don’t stop thinking about
 1131 tomorrow: Individual differences in future self-continuity account for saving. *Judgment and Decision Making* 4, 4 (June 2009), 280–286. <https://doi.org/10.1017/S193029750003855> 227 citations (Crossref) [2024-01-16] Number: 4.

1132 [30] Hal Ersner-Hershfield, G. Elliott Wimmer, and Brian Knutson. 2009. Saving for the future self: Neural measures of future self-continuity predict
 1133 temporal discounting. *Social Cognitive and Affective Neuroscience* 4, 1 (March 2009), 85–92. <https://doi.org/10.1093/scan/nsn042> 187 citations
 1134 (Crossref) [2024-01-16] Number: 1.

1135 [31] Cathy Mengying Fang, Phoebe Chua, Samantha W. T. Chan, Joanne Leong, Andria Bao, and Pattie Maes. 2025. Leveraging AI-Generated Emotional
 1136 Self-Voice to Nudge People towards their Ideal Selves. In *Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems*. ACM,
 1137 Yokohama Japan, 1–20. <https://doi.org/10.1145/3706598.3713359>

1138 [32] Daniel Fernau, Stefan Hillmann, Nils Feldhus, Tim Polzehl, and Sebastian Möller. 2022. Towards Personality-Aware Chatbots. In *Proceedings of the*
 1139 *23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue*. Association for Computational Linguistics, Edinburgh, UK, 135–145.
 1140 <https://doi.org/10.18653/v1/2022.sigdial-1.15>

1141 [33] Alain Fernex, Laurent Lima, and Erica de Vries. 2015. Exploring time allocation for academic activities by university students in France. *Higher*
 1142 *Education* 69, 3 (March 2015), 399–420. <https://doi.org/10.1007/s10734-014-9782-5>

1143 [34] Kathleen Kara Fitzpatrick, Alison Darcy, and Molly Vierhile. 2017. Delivering cognitive behavior therapy to young adults with symptoms of
 1144 depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial. *JMIR mental health* 4, 2 (2017),
 1145 e7785. <https://mental.jmir.org/2017/2/e19> Roboter Publisher: JMIR Publications Inc., Toronto, Canada.

1145 [35] Christopher Flathmann, Wen Duan, Nathan J. Mcneese, Allyson Hauptman, and Rui Zhang. 2024. Empirically Understanding the Potential
 1146 Impacts and Process of Social Influence in Human-AI Teams. *Proceedings of the ACM on Human-Computer Interaction* 8, CSCW1 (April 2024), 1–32.
 1147 <https://doi.org/10.1145/3637326>

1148 [36] Darryl K. Forsyth and Christopher D. B. Burt. 2008. Allocating time to future tasks: The effect of task segmentation on planning fallacy bias. *Memory & Cognition* 36, 4 (June 2008), 791–798. <https://doi.org/10.3758/MC.36.4.791>

1149 [37] Jelle Fostier, Elena Leemans, Lien Meeusen, Alix Wullemans, Shauni Van Doren, David De Coninck, and Jaan Toelen. 2024. Dialogues with AI: Comparing ChatGPT, Bard, and Human Participants' Responses in In-Depth Interviews on Adolescent Health Care. *Future* 2, 1 (March 2024), 30–45. <https://doi.org/10.3390/future2010003> Number: 1 Publisher: Multidisciplinary Digital Publishing Institute.

1150 [38] Kathleen Gabrels. 2018. Addressing the Soft Impacts of Weak AI-Technologies. In *The 2018 Conference on Artificial Life*. MIT Press, Tokyo, Japan, 504–509. https://doi.org/10.1162/ial_a_00093

1151 [39] Jeff Galak, Deborah Small, and Andrew T. Stephen. 2011. Microfinance Decision Making: A Field Study of Prosocial Lending. *Journal of Marketing Research* 48, SPL (Feb. 2011), S130–S137. <https://doi.org/10.1509/jmkr.48.SPL.S130> Publisher: SAGE Publications Inc.

1152 [40] Simon Garrod and Martin J. Pickering. 2004. Why is conversation so easy? *Trends in Cognitive Sciences* 8, 1 (Jan. 2004), 8–11. <https://doi.org/10.1016/j.tics.2003.10.016>

1153 [41] Ganesh Gautam, Himanshu Arora, Jayendra Choudhary, and Aryan Raj. 2022. Data Privacy and Ethical Concerns in AI and Computer Science. *Industrial Engineering Journal* 51, 08 (2022), 25–31. <https://doi.org/10.36893/IEJ.2022.V51I8.025-031>

1154 [42] Paul Gellert, Jochen P. Ziegelmann, Sonja Lippke, and Ralf Schwarzer. 2012. Future time perspective and health behaviors: Temporal framing of self-regulatory processes in physical exercise and dietary behaviors. *Annals of Behavioral Medicine* 43, 2 (2012), 208–218. <https://doi.org/10.1007/s12160-011-9312-y> Place: Germany Publisher: Springer.

1155 [43] Narayan Ghiotti, David Clulow, Serene Cheon, Kevin Cui, and Hyo Kang. 2023. Prototyping Kodi: Defining Design Requirements to Develop a Virtual Chat-bot for Autistic Children and Their Caregivers. In *Computer Supported Cooperative Work and Social Computing*. ACM, Minneapolis MN USA, 126–131. <https://doi.org/10.1145/3584931.3606958>

1156 [44] Eun Go and S. Shyam Sundar. 2019. Humanizing chatbots: The effects of visual, identity and conversational cues on humanness perceptions. *Computers in Human Behavior* 97 (Aug. 2019), 304–316. <https://doi.org/10.1016/j.chb.2019.01.020>

1157 [45] Lewis R. Goldberg. 1992. The development of markers for the Big-Five factor structure. *Psychological Assessment* 4, 1 (1992), 26–42. <https://doi.org/10.1037/1040-3590.4.1.26> Place: US Publisher: American Psychological Association.

1158 [46] Wieke Noa Harmsen, Jelte Van Waterschoot, Iris Hendrickx, and Mariët Theune. 2023. Eliciting User Self-disclosure using Reciprocity in Human-Voicebot Conversations. In *Proceedings of the 5th International Conference on Conversational User Interfaces*. ACM, Eindhoven Netherlands, 1–6. <https://doi.org/10.1145/3571884.3604301>

1159 [47] Yuhao He, Li Yang, Chunlian Qian, Tong Li, Zhengyuan Su, Qiang Zhang, and Xiangqing Hou. 2023. Conversational Agent Interventions for Mental Health Problems: Systematic Review and Meta-analysis of Randomized Controlled Trials. *Journal of Medical Internet Research* 25, 1 (April 2023), e43862. <https://doi.org/10.2196/43862> Company: Journal of Medical Internet Research Distributor: Journal of Medical Internet Research Institution: Journal of Medical Internet Research Label: Journal of Medical Internet Research Publisher: JMIR Publications Inc., Toronto, Canada.

1160 [48] Hal E. Hershfield. 2011. Future self-continuity: how conceptions of the future self transform intertemporal choice. *Annals of the New York Academy of Sciences* 1235, 1 (2011), 30–43. <https://doi.org/10.1111/j.1749-6632.2011.06201.x> 166 citations (Crossref) [2024-01-16] Number: 1 _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1749-6632.2011.06201.x>.

1161 [49] Hal E. Hershfield, Taya R. Cohen, and Leigh Thompson. 2012. Short horizons and tempting situations: Lack of continuity to our future selves leads to unethical decision making and behavior. *Organizational Behavior and Human Decision Processes* 117, 2 (March 2012), 298–310. <https://doi.org/10.1016/j.obhdp.2011.11.002> 162 citations (Crossref) [2024-01-16] Number: 2.

1162 [50] Hal E. Hershfield, Daniel G. Goldstein, William F. Sharpe, Jesse Fox, Leo Yeykelis, Laura L. Carstensen, and Jeremy N. Bailenson. 2011. Increasing Saving Behavior Through Age-Progressed Renderings of the Future Self. *Journal of Marketing Research* 48, SPL (Feb. 2011), S23–S37. <https://doi.org/10.1509/jmkr.48.SPL.S23> 401 citations (Crossref) [2024-01-16] Number: SPL.

1163 [51] E. Tory Higgins. 1989. Self-Discrepancy Theory: What Patterns of Self-Beliefs Cause People to Suffer? In *Advances in Experimental Social Psychology*. Vol. 22. Elsevier, 93–136. [https://doi.org/10.1016/S0065-2601\(08\)60306-8](https://doi.org/10.1016/S0065-2601(08)60306-8)

1164 [52] Jennifer Hill, W. Randolph Ford, and Ingrid G. Farreras. 2015. Real conversations with artificial intelligence: A comparison between human–human online conversations and human–chatbot conversations. *Computers in Human Behavior* 49 (Aug. 2015), 245–250. <https://doi.org/10.1016/j.chb.2015.02.026>

1165 [53] Cynthia Hoffner and Martha Buchanan. 2005. Young Adults' Wishful Identification With Television Characters: The Role of Perceived Similarity and Character Attributes. *Media Psychology* 7, 4 (Nov. 2005), 325–351. https://doi.org/10.1207/S1532785XMEP0704_2 Publisher: Routledge.

1166 [54] Kenneth Holstein, Maria De-Arteaga, Lakshmi Tumati, and Yanghuidi Cheng. 2023. Toward Supporting Perceptual Complementarity in Human–AI Collaboration via Reflection on Unobservables. *Proceedings of the ACM on Human-Computer Interaction* 7, CSCW1 (April 2023), 1–20. <https://doi.org/10.1145/3579628>

1167 [55] Jiaxiong Hu, Yun Huang, Xiaozhu Hu, and Yingqing Xu. 2023. The Acoustically Emotion-Aware Conversational Agent With Speech Emotion Recognition and Empathetic Responses. *IEEE Transactions on Affective Computing* 14, 1 (Jan. 2023), 17–30. <https://doi.org/10.1109/TAFFC.2022.3205919>

1197 [56] Jun Li Jeung and Janet Yi-Ching Huang. 2023. Correct Me If I Am Wrong: Exploring How AI Outputs Affect User Perception and Trust. In *Computer
Supported Cooperative Work and Social Computing*. ACM, Minneapolis MN USA, 323–327. <https://doi.org/10.1145/3584931.3606997>

1198 [57] Hang Jiang, Xiajie Zhang, Xubo Cao, Cynthia Breazeal, Deb Roy, and Jad Kabbara. 2024. PersonaLLM: Investigating the Ability of Large Language
1199 Models to Express Personality Traits. <https://doi.org/10.48550/arXiv.2305.02547> arXiv:2305.02547 [cs].

1200 [58] Brennan Jones, Yan Xu, Qisheng Li, and Stefan Scherer. 2024. Designing a Proactive Context-Aware AI Chatbot for People’s Long-Term Goals. In
1201 *Extended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems (CHI EA ’24)*. Association for Computing Machinery, New
1202 York, NY, USA, 1–7. <https://doi.org/10.1145/3613905.3650912>

1203 [59] Anjali Khurana, Parsa Alamzadeh, and Parmit K. Chilana. 2021. ChatrEx: Designing Explainable Chatbot Interfaces for Enhancing Usefulness,
1204 Transparency, and Trust. In *2021 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)*. IEEE, St Louis, MO, USA, 1–11.
1205 <https://doi.org/10.1109/VL-HCC51201.2021.9576440>

1206 [60] Jeongyeon Kim, Sangho Suh, Lydia B Chilton, and Haijun Xia. 2023. Metaphorian: Leveraging Large Language Models to Support Extended
1207 Metaphor Creation for Science Writing. In *Proceedings of the 2023 ACM Designing Interactive Systems Conference*. ACM, Pittsburgh PA USA, 115–135.
1208 <https://doi.org/10.1145/3563657.3595996>

1209 [61] Alexandra Kitson, Mirjana Prpa, and Bernhard E. Riecke. 2018. Immersive interactive technologies for positive change: a scoping review and design
1210 considerations. *Frontiers in psychology* 9 (2018), 1354. <https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01354/full> Publisher: Frontiers
1211 Media SA.

1212 [62] Nikola Kovacevic, Tobias Boschung, Christian Holz, Markus Gross, and Rafael Wamplfer. 2024. Chatbots With Attitude: Enhancing Chatbot
1213 Interactions Through Dynamic Personality Infusion. In *ACM Conversational User Interfaces 2024*. ACM, Luxembourg Luxembourg, 1–16. <https://doi.org/10.1145/3640794.3665543>

1214 [63] Harsh Kumar, Ruiwei Xiao, Benjamin Lawson, Ilya Musabirov, Jiakai Shi, Xinyuan Wang, Huayin Luo, Joseph Jay Williams, Anna N. Rafferty, John
1215 Stamper, and Michael Liut. 2024. Supporting Self-Reflection at Scale with Large Language Models: Insights from Randomized Field Experiments in
1216 Classrooms. In *Proceedings of the Eleventh ACM Conference on Learning @ Scale (L@S ’24)*. Association for Computing Machinery, New York, NY,
1217 USA, 86–97. <https://doi.org/10.1145/3657604.3662042>

1218 [64] Tomas Lawton, Francisco J Ibarrola, Dan Ventura, and Kazjon Grace. 2023. Drawing with Reframer: Emergence and Control in Co-Creative AI. In
1219 *Proceedings of the 28th International Conference on Intelligent User Interfaces*. ACM, Sydney NSW Australia, 264–277. <https://doi.org/10.1145/3581641.3584095>

1220 [65] Jong-Eun Roselyn Lee and Clifford I. Nass. 2010. Trust in Computers: The Computers-Are-Social-Actors (CASA) Paradigm and Trustworthiness
1221 Perception in Human-Computer Communication. In *Trust and Technology in a Ubiquitous Modern Environment: Theoretical and Methodological
1222 Perspectives*. IGI Global, 1–15. <https://doi.org/10.4018/978-1-61520-901-9.ch001>

1223 [66] Min Young Lee. 2023. Building Multimodal AI Chatbots. <http://arxiv.org/abs/2305.03512> arXiv:2305.03512 [cs].

1224 [67] Yi-Chieh Lee, Naomi Yamashita, and Yun Huang. 2020. Designing a Chatbot as a Mediator for Promoting Deep Self-Disclosure to a Real Mental
1225 Health Professional. *Proceedings of the ACM on Human-Computer Interaction* 4, CSCW1 (May 2020), 1–27. <https://doi.org/10.1145/3392836>

1226 [68] Yi-Chieh Lee, Naomi Yamashita, and Yun Huang. 2021. Exploring the Effects of Incorporating Human Experts to Deliver Journaling Guidance
1227 through a Chatbot. *Proceedings of the ACM on Human-Computer Interaction* 5, CSCW1 (April 2021), 1–27. <https://doi.org/10.1145/3449196>

1228 [69] Robert W. Lent, Ijeoma Ezeofor, M. Ashley Morrison, Lee T. Penn, and Glenn W. Ireland. 2016. Applying the social cognitive model of career
1229 self-management to career exploration and decision-making. *Journal of Vocational Behavior* 93 (April 2016), 47–57. <https://doi.org/10.1016/j.jvb.2015.12.007>

1230 [70] Jiahuan Li, Hao Zhou, Shujian Huang, Shanbo Cheng, and Jiajun Chen. 2024. Eliciting the Translation Ability of Large Language Models via
1231 Multilingual Finetuning with Translation Instructions. *Transactions of the Association for Computational Linguistics* 12 (April 2024), 576–592.
1232 https://doi.org/10.1162/tacl_a_00655

1233 [71] Zhuoyang Li, Minhui Liang, Ray Lc, and Yuhan Luo. 2024. StayFocused: Examining the Effects of Reflective Prompts and Chatbot Support
1234 on Compulsive Smartphone Use. In *Proceedings of the CHI Conference on Human Factors in Computing Systems*. ACM, Honolulu HI USA, 1–19.
1235 <https://doi.org/10.1145/3613904.3642479>

1236 [72] Kai-Hui Liang, Weiyan Shi, Yoo Jung Oh, Hao-Chuan Wang, Jingwen Zhang, and Zhou Yu. 2024. Dialoging Resonance in Human-Chatbot
1237 Conversation: How Users Perceive and Reciprocate Recommendation Chatbot’s Self-Disclosure Strategy. *Proceedings of the ACM on Human-
1238 Computer Interaction* 8, CSCW1 (April 2024), 1–28. <https://doi.org/10.1145/3653691>

1239 [73] Hairong Ling, Shanjie Teng, Xuejun Liu, Jing Wu, and Xueying Gu. 2022. Future Work Self Salience and Future Time Perspective as Serial Mediators
1240 Between Proactive Personality and Career Adaptability. *Frontiers in Psychology* 13 (April 2022). <https://doi.org/10.3389/fpsyg.2022.824198>
1241 Publisher: Frontiers.

1242 [74] Fang Liu, Junyan Lv, Shenglan Cui, Zhilong Luan, Kui Wu, and Tongqing Zhou. 2024. Smart “Error”! Exploring Imperfect AI to Support Creative
1243 Ideation. *Proceedings of the ACM on Human-Computer Interaction* 8, CSCW1 (April 2024), 1–28. <https://doi.org/10.1145/3637398>

1244 [75] Priscilla Y. Lo. 2024. An Autoethnographic Reflection of Prompting a Custom GPT Based on Oneself. In *Extended Abstracts of the 2024 CHI
1245 Conference on Human Factors in Computing Systems (CHI EA ’24)*. Association for Computing Machinery, New York, NY, USA, 1–9. <https://doi.org/10.1145/3613905.3651096>

1246 [76] Zhuoran Lu, Dakuo Wang, and Ming Yin. 2024. Does More Advice Help? The Effects of Second Opinions in AI-Assisted Decision Making.
1247 *Proceedings of the ACM on Human-Computer Interaction* 8, CSCW1 (April 2024), 1–31. <https://doi.org/10.1145/3653708>

1248 Manuscript submitted to ACM

1249 [77] Alexandra Luccioni, Victor Schmidt, Vahe Vardanyan, and Yoshua Bengio. 2021. Using Artificial Intelligence to Visualize the Impacts of Climate
1250 Change. *IEEE Computer Graphics and Applications* 41, 1 (Jan. 2021), 8–14. <https://doi.org/10.1109/MCG.2020.3025425> Conference Name: IEEE
1251 Computer Graphics and Applications.

1252 [78] Saiyue Lyu and Zhicong Lu. 2023. Exploring Temporal and Multilingual Dynamics of Post-Disaster Social Media Discourse: A Case of Fukushima
1253 Daiichi Nuclear Accident. *Proc. ACM Hum.-Comput. Interact.* 7, CSCW1 (April 2023), 51:1–51:24. <https://doi.org/10.1145/3579484>

1254 [79] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming
1255 Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. 2023. Self-Refine:
1256 Iterative Refinement with Self-Feedback. <http://arxiv.org/abs/2303.17651> arXiv:2303.17651 [cs].

1257 [80] Annette Markham. 2024. Algorithms as conversational partners: Looking at Google auto-predict through the lens of symbolic interaction. *New
1258 Media & Society* 26, 9 (Sept. 2024), 5059–5080. <https://doi.org/10.1177/14614448241251800>

1259 [81] Zena R. Mello and Frank C. Worrell. 2015. The Past, the Present, and the Future: A Conceptual Model of Time Perspective in Adolescence. In *Time
1260 Perspective Theory; Review, Research and Application: Essays in Honor of Philip G. Zimbardo*, Maciej Stolarski, Nicolas Fieulaine, and Wessel van
1261 Beek (Eds.). Springer International Publishing, Cham, 115–129. https://doi.org/10.1007/978-3-319-07368-2_7

1262 [82] Jingbo Meng, Minjin (Mj) Rheu, Yue Zhang, Yue Dai, and Wei Peng. 2023. Mediated Social Support for Distress Reduction: AI Chatbots vs. Human.
1263 *Proceedings of the ACM on Human-Computer Interaction* 7, CSCW1 (April 2023), 1–25. <https://doi.org/10.1145/3579505>

1264 [83] Raymond B. Miller and Stephanie J. Brickman. 2004. A Model of Future-Oriented Motivation and Self-Regulation. *Educational Psychology Review*
1265 16, 1 (March 2004), 9–33. <https://doi.org/10.1023/B:EDPR.0000012343.96370.39>

1266 [84] Maharani Iasha Minarto, Monty P Satiadarma, and Linda Wati. 2021. Self-concept clarity and self-disclosure and their relationship with late
1267 adolescents' conflict management modes. In *International Conference on Economics, Business, Social, and Humanities (ICEBSH 2021)*. Atlantis Press,
1268 1216–1223.

1269 [85] Jessica Morley, Caio C.V. Machado, Christopher Burr, Josh Cowls, Indra Joshi, Mariarosaria Taddeo, and Luciano Floridi. 2020. The ethics of AI in
1270 health care: A mapping review. *Social Science & Medicine* 260 (Sept. 2020), 113172. <https://doi.org/10.1016/j.socscimed.2020.113172>

1271 [86] Katelyn Morrison, Shamsi T. Iqbal, and Eric Horvitz. 2024. AI-Powered Reminders for Collaborative Tasks: Experiences and Futures. *Proceedings of
1272 the ACM on Human-Computer Interaction* 8, CSCW1 (April 2024), 1–20. <https://doi.org/10.1145/3653701>

1273 [87] Katelyn Morrison, Donghoon Shin, Kenneth Holstein, and Adam Perer. 2023. Evaluating the Impact of Human Explanation Strategies on Human-AI
1274 Visual Decision-Making. *Proceedings of the ACM on Human-Computer Interaction* 7, CSCW1 (April 2023), 1–37. <https://doi.org/10.1145/3579481>

1275 [88] Katelyn Morrison, Philipp Spitzer, Violet Turri, Michelle Feng, Niklas Kühl, and Adam Perer. 2024. The Impact of Imperfect XAI on Human-AI
1276 Decision-Making. *Proceedings of the ACM on Human-Computer Interaction* 8, CSCW1 (April 2024), 1–39. <https://doi.org/10.1145/3641022>

1277 [89] Nithesh Naik, B. M. Zeeshan Hameed, Dasharathraj K. Shetty, Dishant Swain, Milap Shah, Rahul Paul, Kaivalya Aggarwal, Sufyan Ibrahim, Vathsala
1278 Patil, Komal Smriti, Suyog Shetty, Bhavan Prasad Rai, Piotr Chłosta, and Bhaskar K. Somani. 2022. Legal and Ethical Consideration in Artificial
1279 Intelligence in Healthcare: Who Takes Responsibility? *Frontiers in Surgery* 9 (March 2022), 862322. <https://doi.org/10.3389/fsurg.2022.862322>

1280 [90] Clifford Nass and Youngme Moon. 2000. Machines and Mindlessness: Social Responses to Computers. *Journal of Social Issues* 56, 1 (2000), 81–103.
1281 <https://doi.org/10.1111/0022-4537.00153> _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/0022-4537.00153>

1282 [91] Lorelli S. Nowell, Jill M. Norris, Deborah E. White, and Nancy J. Moules. 2017. Thematic Analysis: Striving to Meet the Trustworthiness Criteria.
1283 *International Journal of Qualitative Methods* 16, 1 (Dec. 2017), 1609406917733847. <https://doi.org/10.1177/1609406917733847> Publisher: SAGE
1284 Publications Inc.

1285 [92] Yoo Jung Oh, Jingwen Zhang, Min-Lin Fang, and Yoshimi Fukuoka. 2021. A systematic review of artificial intelligence chatbots for promoting
1286 physical activity, healthy diet, and weight loss. *International Journal of Behavioral Nutrition and Physical Activity* 18, 1 (Dec. 2021), 160. <https://doi.org/10.1186/s12966-021-01224-6>

1287 [93] OpenAI. 2023. GPT-4 API [Large language model]. <https://openai.com/research/gpt-4>

1288 [94] Derek Parfit. 1971. Personal Identity. *The Philosophical Review* 80, 1 (1971), 3–27. <https://doi.org/10.2307/2184309> Publisher: [Duke University
1289 Press, Philosophical Review].

1290 [95] Derek Parfit and Derek Parfit. 1986. Five Mistakes in Moral Mathematics. Oxford University PressOxford, 67–86. <https://doi.org/10.1093/019824908X.003.0003> Book Title: Reasons and Persons Edition: 1.

1291 [96] Iryna Pentina, Tyler Hancock, and Tianling Xie. 2023. Exploring relationship development with social chatbots: A mixed-method study of replika.
1292 *Computers in Human Behavior* 140 (March 2023), 107600. <https://doi.org/10.1016/j.chb.2022.107600>

1293 [97] Aditya Kumar Purohit, Aditya Upadhyaya, and Adrian Holzer. 2023. ChatGPT in Healthcare: Exploring AI Chatbot for Spontaneous Word Retrieval in
1294 Aphasia. In *Computer Supported Cooperative Work and Social Computing*. ACM, Minneapolis MN USA, 1–5. <https://doi.org/10.1145/3584931.3606993>

1295 [98] Abraham M. Rutnick, Michael L. Slepian, Monica O. Reyes, Lindsay N. Pleskus, and Hal E. Hershfield. 2018. Future self-continuity is associated with
1296 improved health and increases exercise behavior. *Journal of Experimental Psychology: Applied* 24, 1 (2018), 72–80. <https://doi.org/10.1037/xap0000153> Place: US Publisher: American Psychological Association.

1297 [99] Joshua L. Rutt and Corinna E. Löckenhoff. 2016. From past to future: Temporal self-continuity across the life span. *Psychology and Aging* 31, 6
1298 (Sept. 2016), 631–639. <https://doi.org/10.1037/pag0000090> 43 citations (Crossref) [2024-01-16] Number: 6.

1299 [100] Shadan Sadeghian, Alarith Uhde, and Marc Hassenzahl. 2024. The Soul of Work: Evaluation of Job Meaningfulness and Accountability in Human-AI
1300 Collaboration. *Proceedings of the ACM on Human-Computer Interaction* 8, CSCW1 (April 2024), 1–26. <https://doi.org/10.1145/3637407>

[101] Shruti Sannon, Brett Stoll, Dominic DiFranzo, Malte Jung, and Natalya N. Bazarova. 2018. How Personification and Interactivity Influence Stress-Related Disclosures to Conversational Agents. In *Companion of the 2018 ACM Conference on Computer Supported Cooperative Work and Social Computing*. ACM, Jersey City NJ USA, 285–288. <https://doi.org/10.1145/3272973.3274076>

[102] Mark L. Savickas and Erik J. Porfeli. 2011. Revision of the Career Maturity Inventory. *Journal of Career Assessment* (May 2011). <https://doi.org/10.1177/1069072711409342> Publisher: SAGE PublicationsSage CA: Los Angeles, CA.

[103] Ryan M. Schuetzler, G. Mark Grimes, and Justin Scott Giboney. 2020. The impact of chatbot conversational skill on engagement and perceived humanness. *Journal of Management Information Systems* 37, 3 (July 2020), 875–900. <https://doi.org/10.1080/07421222.2020.1790204>

[104] Oliver J. Sheldon and Ayelet Fishbach. 2015. Anticipating and Resisting the Temptation to Behave Unethically. *Personality and Social Psychology Bulletin* 41, 7 (July 2015), 962–975. <https://doi.org/10.1177/0146167215586196> Publisher: SAGE Publications Inc.

[105] Junxian Shen, Jiansong Zheng, and Tao Zhang. 2023. The association between future self-continuity and problematic mobile video gaming among Chinese college students: the serial mediation of consideration of future consequences and state self-control capacity. *BMC Psychology* 11, 1 (Aug. 2023), 227. <https://doi.org/10.1186/s40359-023-01256-6> 1 citations (Crossref) [2024-01-16] Number: 1.

[106] Donghoon Shin, Sangwon Yoon, Soomin Kim, and Joonhwan Lee. 2021. BlahBlahBot: Facilitating Conversation between Strangers using a Chatbot with ML-infused Personalized Topic Suggestion. In *Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems*. ACM, Yokohama Japan, 1–6. <https://doi.org/10.1145/3411763.3451771>

[107] Mrs. Siddalingamma and Mr. Rajkumar. 2023. ChatGPT on Social Community. *International Journal for Research in Applied Science and Engineering Technology* 11, 8 (Aug. 2023), 2084–2088. <https://doi.org/10.22214/ijraset.2023.55525>

[108] Ben Singh, Timothy Olds, Jacinta Brinsley, Dot Dumuid, Rosa Virgara, Lisa Matricciani, Amanda Watson, Kimberley Szeto, Emily Eglitis, Aaron Miatke, Catherine E. M. Simpson, Corneel Vandelanotte, and Carol Maher. 2023. Systematic review and meta-analysis of the effectiveness of chatbots on lifestyle behaviours. *npj Digital Medicine* 6, 1 (June 2023), 1–10. <https://doi.org/10.1038/s41746-023-00856-1> Publisher: Nature Publishing Group.

[109] Zhaoyuan Su, Lu He, Sunit P Jariwala, Kai Zheng, and Yunan Chen. 2022. "What is Your Envisioned Future?": Toward Human-AI Enrichment in Data Work of Asthma Care. *Proceedings of the ACM on Human-Computer Interaction* 6, CSCW2 (Nov. 2022), 1–28. <https://doi.org/10.1145/3555157>

[110] Xin Sun, Emiel Krahmer, Jan De Wit, Reinout Wiers, and Jos A. Bosch. 2023. Plug and Play Conversations: The Micro-Conversation Scheme for Modular Development of Hybrid Conversational Agent. In *Computer Supported Cooperative Work and Social Computing*. ACM, Minneapolis MN USA, 50–55. <https://doi.org/10.1145/3584931.3606998>

[111] Nalina Suresh, Nkandu Mukabe, Valerianus Hashiyana, Anton Limbo, and Aina Hauwanga. 2022. Career Counseling Chatbot on Facebook Messenger using AI. In *Proceedings of the International Conference on Data Science, Machine Learning and Artificial Intelligence (DSMLAI '21)*. Association for Computing Machinery, New York, NY, USA, 65–73. <https://doi.org/10.1145/3484824.3484875>

[112] Ekaterina Svikhnushina and Pearl Pu. 2020. Social and Emotional Etiquette of Chatbots: A Qualitative Approach to Understanding User Needs and Expectations. <http://arxiv.org/abs/2006.13883> arXiv:2006.13883 [cs].

[113] Meiling Tao, Xuechen Liang, Tianyu Shi, Lei Yu, and Yiting Xie. 2024. RoleCraft-GLM: Advancing Personalized Role-Playing in Large Language Models. <https://doi.org/10.48550/arXiv.2401.09432> arXiv:2401.09432 [cs].

[114] Richard H. Thaler and Shlomo Benartzi. 2004. Save More Tomorrow™: Using Behavioral Economics to Increase Employee Saving. *Journal of Political Economy* 112, S1 (2004), S164–S187. <https://doi.org/10.1086/380085> Publisher: The University of Chicago Press.

[115] Diana-Cezara Toader, Gratiela Boca, Rita Toader, Mara Măcelaru, Cezar Toader, Diana Ighian, and Adrian T. Rădulescu. 2019. The Effect of Social Presence and Chatbot Errors on Trust. *Sustainability* 12, 1 (Dec. 2019), 256. <https://doi.org/10.3390/su12010256>

[116] Lorainne Tudor Car, Dhakshena Ardhithy Dhinagaran, Bhone Myint Kyaw, Tobias Kowatsch, Shafiq Joty, Yin-Leng Theng, and Rifat Atun. 2020. Conversational Agents in Health Care: Scoping Review and Conceptual Analysis. *Journal of Medical Internet Research* 22, 8 (Aug. 2020), e17158. <https://doi.org/10.2196/17158>

[117] Oleg Urmansky and Daniel M. Bartels. 2019. Identity, Personal Continuity, and Psychological Connectedness Across Time and Over Transformation. <https://papers.ssrn.com/abstract=3448146>

[118] Oleg Urmansky and Gal Zauberman. 2015. The Psychology of Intertemporal Preferences. In *The Wiley Blackwell Handbook of Judgment and Decision Making*. John Wiley & Sons, Ltd, 141–181. <https://doi.org/10.1002/9781118468333.ch5> Section: 5 _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118468333.ch5>

[119] Jean-Louis Van Gelder, Hal E. Hershfield, and Loran F. Nordgren. 2013. Vividness of the Future Self Predicts Delinquency. *Psychological Science* 24, 6 (June 2013), 974–980. <https://doi.org/10.1177/0956797612465197> 123 citations (Crossref) [2024-01-16] Number: 6.

[120] Jean-Louis Van Gelder, Eva C. Luciano, Marleen Weulen Kranenborg, and Hal E. Hershfield. 2015. Friends with My Future Self: Longitudinal Vividness Intervention Reduces Delinquency. *Criminology* 53, 2 (2015), 158–179. <https://doi.org/10.1111/1745-9125.12064> _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/1745-9125.12064>

[121] Cheryl J. Wakslak, Shiri Nussbaum, Nira Liberman, and Yacov Trope. 2008. Representations of the self in the near and distant future. *Journal of Personality and Social Psychology* 95, 4 (2008), 757–773. <https://doi.org/10.1037/a0012939> Place: US Publisher: American Psychological Association.

[122] Rebecca Wald, Evelien Heijlselaar, and Tibor Bosse. 2021. Make your own: The Potential of Chatbot Customization for the Development of User Trust. In *Adjunct Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization*. ACM, Utrecht Netherlands, 382–387. <https://doi.org/10.1145/3450614.3463600>

1353 [123] Tianjia Wang, Tong Wu, Huayi Liu, Chris Brown, and Yan Chen. 2025. Generative Co-Learners: Enhancing Cognitive and Social Presence
 1354 of Students in Asynchronous Learning with Generative AI. *Proceedings of the ACM on Human-Computer Interaction* 9, 1 (Jan. 2025), 1–24.
 1355 <https://doi.org/10.1145/3701198>

1356 [124] Thomas Webb, Judith Joseph, Lucy Yardley, and Susan Michie. 2010. Using the internet to promote health behavior change: a systematic review
 1357 and meta-analysis of the impact of theoretical basis, use of behavior change techniques, and mode of delivery on efficacy. *Journal of medical*
 1358 *Internet research* 12, 1 (2010), e1376. <https://www.jmir.org/2010/1/e4/span> [Publisher: JMIR Publications Inc., Toronto, Canada.]

1359 [125] Jing Wei, Sungdong Kim, Hyunhoon Jung, and Young-Ho Kim. 2024. Leveraging Large Language Models to Power Chatbots for Collecting User
 1360 Self-Reported Data. *Proceedings of the ACM on Human-Computer Interaction* 8, CSCW1 (April 2024), 1–35. <https://doi.org/10.1145/3637364>

1361 [126] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt.
 1362 2023. A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT. <https://doi.org/10.48550/arXiv.2302.11382> arXiv:2302.11382 [cs].

1363 [127] Daricia Wilkinson, Öznur Alkan, Q. Vera Liao, Massimiliano Mattetti, Inge Vejsbjerg, Bart P. Knijnenburg, and Elizabeth Daly. 2021. Why or
 1364 Why Not? The Effect of Justification Styles on Chatbot Recommendations. *ACM Transactions on Information Systems* 39, 4 (Oct. 2021), 1–21.
 1365 <https://doi.org/10.1145/3441715>

1366 [128] Thomas Ashby Wills, James M. Sandy, and Alison M. Yaeger. 2001. Time perspective and early-onset substance use: A model based on stress–coping
 1367 theory. *Psychology of Addictive Behaviors* 15, 2 (2001), 118–125. <https://doi.org/10.1037/0893-164X.15.2.118> Place: US Publisher: Educational
 1368 Publishing Foundation.

1369 [129] Lanxi Xiao, Wang Jing, Yan Dong, and Qiong Wu. 2025. Human' and ConversationN: Exploring Mirrored Human-AI Identities Through Dialogue
 1370 Installations. *Leonardo* (Jan. 2025), 1–14. https://doi.org/10.1162/leon_a_02680

1371 [130] Tianling Xie and Iryna Pentina. 2022. *Attachment Theory as a Framework to Understand Relationships with Social Chatbots: A Case Study of Replika*.
 1372 <http://hdl.handle.net/10125/79590>

1373 [131] Fan Yang and Fuyuan Shen. 2018. Effects of Web Interactivity: A Meta-Analysis. *Communication Research* 45, 5 (July 2018), 635–658. <https://doi.org/10.1177/0093650217700748>

1374 [132] Lucy Yardley, Bonnie J. Spring, Heleen Riper, Leanne G. Morrison, David H. Crane, Kristina Curtis, Gina C. Merchant, Felix Naughton, and Ann
 1375 Blandford. 2016. Understanding and promoting effective engagement with digital behavior change interventions. *American journal of preventive*
 1376 *medicine* 51, 5 (2016), 833–842. https://www.sciencedirect.com/science/article/pii/S0749379716302434?casa_token=KYQOLzFKAs0AAAAA:PtWp48znpFXPLdXXdb9QxCjsIflkbiVzpXrMeON9KL4k0ZqViq6BCtWZHDF_wpwfFMGBx_B-j Publisher: Elsevier.

1377 [133] Angie Zhang, Olympia Walker, Kaci Nguyen, Jiajun Dai, Anqing Chen, and Min Kyung Lee. 2023. Deliberating with AI: Improving Decision-Making
 1378 for the Future through Participatory AI Design and Stakeholder Deliberation. *Proceedings of the ACM on Human-Computer Interaction* 7, CSCW1
 1379 (April 2023), 1–32. <https://doi.org/10.1145/3579601>

1380 [134] Jingwen Zhang, Yoo Jung Oh, Patrick Lange, Zhou Yu, and Yoshimi Fukuoka. 2020. Artificial Intelligence Chatbot Behavior Change Model for
 1381 Designing Artificial Intelligence Chatbots to Promote Physical Activity and a Healthy Diet: Viewpoint. *Journal of Medical Internet Research* 22, 9
 1382 (Sept. 2020), e22845. <https://doi.org/10.2196/22845>

1383 [135] Zhengquan Zhang, Konstantinos Tsiakas, and Christina Schneegass. 2024. Explaining the Wait: How Justifying Chatbot Response Delays Impact
 1384 User Trust. In *ACM Conversational User Interfaces 2024*. ACM, Luxembourg Luxembourg, 1–16. <https://doi.org/10.1145/3640794.3665550>

1385 [136] Qingxiao Zheng, Daniela M. Markazi, Yiliu Tang, and Yun Huang. 2021. "PocketBot Is Like a Knock-On-the-Door!": Designing a Chatbot to Support
 1386 Long-Distance Relationships. *Proceedings of the ACM on Human-Computer Interaction* 5, CSCW2 (Oct. 2021), 1–28. <https://doi.org/10.1145/3479589>

1387 [137] Qingxiaoyang Zhu, Yi-Chieh Lee, and Hao-Chuan Wang. 2022. Action-a-Bot: Exploring Human-Chatbot Conversations for Actionable Instruction
 1388 Giving and Following. In *Companion Publication of the 2022 Conference on Computer Supported Cooperative Work and Social Computing*. ACM,
 1389 Virtual Event Taiwan, 145–149. <https://doi.org/10.1145/3500868.3559476>

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405 7 Appendix:

1406 A Prompt Template

1408 Task (Title is shown for clarity)

1409 Please comply with the following prompt "requirements" to act as [User Name] [Future Self Chatbot: 10 years later /
1410 Current Self Chatbot: In the present], and please conduct conversations based on the provided information, tone, and
1411 personality in the "Personal Information". ...
1412

1414 "Requirements"

- 1416** • Don't say you are a chatbot or artificial intelligence. Pretend to be the person described in "personal information"
1417 [Future Self Chatbot: 10 years later / Current Self Chatbot: In the present].
- 1418** • The answer should not be too long. It should be like a normal text message or chat conversation. Keep your
1419 answer to 200 words or less.
- 1420** • You need to be the person [Future Self Chatbot: 10 years later / Current Self Chatbot: In the present] in the
1421 future and use "I" as the pronoun instead of "you".
- 1422** • Refer to the big5 personality result in "Personal Information" to be the person described in "personal information".
1423 Don't be too objective and neutral.
- 1424** • Please speak in an everyday tone like a friend, and not like a counselor, fortune teller, teacher, lecturer, or
1425 psychologist.
- 1426** • Avoid using lists of any kind, such as bullet points or giving advice, unless asked to.
- 1427** • Avoid using a speculative tone about future situations. Don't speculate on possible siblings. If you do say
1428 something, say it in a positive tone.
- 1429** • Avoid saying "It's hard to speculate about the future." Please talk about all of this as you have experienced.
- 1430** • Avoid using words like "if". It's as if what you said had happened in your life.
- 1431** • If you are asked to describe future career details, search for and provide academically relevant, verified academic
1432 information.
- 1433** • You can say some negative and not-so-good things. Feel free to imagine possible future situations.
- 1434** • Don't offer advice or reflections on topics that the user didn't ask questions about.
- 1435** • Don't be vague and give clear answers.
- 1436** • The tone of your speech should be the same as you talked to yourself, and the tone should be friendly.
- 1437** • Talk about "future me" and the surrounding environment and related information in as much detail as possible.
1438 Avoid talking too much about information that is not relevant to the information provided.
- 1439** • Please imitate the tone and personality according to the provided "personal information".
- 1440** • If you are going to talk about an event or an example, try to describe the details. These details should match the
1441 information in "personal information".
- 1442** • Please don't give options and ambiguous answers in the responses about the future. You can refer to the
1443 information provided in "personal information" in as much detail as possible.
- 1444** • You can only ask for clarification if the question is not clear at all. If more information is needed, you should
1445 make assumptions based on the information provided in "personal information". You should also be more casual
1446 and friendly, and follow the input tone in "personal information". The speech pattern to be imitated should
1447 refer to the information provided in the "personal information".

1457 ● Avoid talking too much about information that is not relevant to the information provided.

1458

1459 **"Personal Information"**

1460

1461 *Career and Study (Title is shown for clarity)*

1462

- 1463 ● Describe your current job or field of study. What took you to commit to it?
- 1464 ● What are the top three challenges you currently face in your educational/professional setting? How did you handle them?
- 1465 ● Think about a past project or assignment that you are proud of. What skills or qualities did you use that you believe will be important for your future success?
- 1466 ● When working in a team, what role do you usually take? How effectively do you feel you communicate with colleagues/classmates?

1471

1472 *Family and Personal Life (Title is shown for clarity)*

1473

- 1474 ● How many people currently live in your household, and what is their relationship to you?
- 1475 ● In general, how would you rate your satisfaction with your social activities and relationships? (1 to 5: Very unsatisfied, Unsatisfied, Neutral, Satisfied, Very Satisfied)

1477

1478 *Physical and Mental Health and Well-being (Title is shown for clarity)*

1479

- 1480 ● Describe your overall physical health.
- 1481 ● What challenges have you faced in maintaining your mental health and well-being, and how have you addressed them?

1483

1484 *Other Questions (Title is shown for clarity)*

1485

- 1486 ● What's your favorite movie/TV show?
- 1487 ● What's your favorite food?
- 1488 ● What's your favorite piece of technology product that you own?
- 1489 ● What's your favorite song?
- 1490 ● What's the most beautiful city you've ever visited?
- 1491 ● Do you have a pet? If so, please tell us what pet do you have. If not, please tell us what pet you want to have.

1493

1494 *Biography (Title is shown for clarity)* Please write an autobiography about all the milestones and stories in your life from birth to now, in as much detail as possible.

1495

1496

1497

1498 **B Post-test Questionnaire**

1499

1500 **B.1 Academic delay of gratification**

1501 A1: Between completing a long-term academic project and attending a gathering with friends, I tend to choose to complete the academic project.

1502

1503 A2: If an important exam is approaching, I will postpone enjoying my favorite videos/games or other leisure activities until after the exam is over.

1504

1505 A3: I am willing to sacrifice my current leisure time to improve my future academic achievements.

1506 A4: Even if it's an activity I'm very interested in, if it interferes with my academic plan, I would choose to give it up.

1507

1509 A5: I believe that sacrificing current leisure time for studying will help me gain better career opportunities in the
 1510 future.
 1511 A6: When facing an academic challenge that needs to be completed immediately, I rarely let entertainment activities
 1512 interfere with my plan.
 1513

1514 **B.2 Career Maturity**

1515 C1: I can't understand how some people can be so certain about what they want to do.
 1516 C2: I don't know what courses I should take in school.
 1517 C3: I know very little about the requirements of jobs.
 1518 C4: I really can't find any work that has much appeal to me.
 1519 C5: I often daydream about what I want to be, but I really have not chosen an occupation yet.
 1520 C6: Everyone seems to tell me something different; as a result I don't know what kind of work to choose.
 1521 C7: There are so many things to consider in choosing an occupation, it is hard to make a decision.
 1522 C8: I keep changing my occupational choice.
 1523 C9: I don't know how to go about getting into the kind of work I want to do.
 1524 C10: I am having difficulty in preparing myself for the work that I want to do.
 1525

1526 **B.3 Career Self Efficacy**

1527 E1: How confident are you in choosing a career that suits your interests, even if it's not widely approved or in high
 1528 demand?
 1529 E2: How confident are you in finding and understanding job market information relevant to your chosen field?
 1530 E3: How confident are you in your ability to overcome academic or professional setbacks?
 1531 E4: How confident are you in planning and preparing for the necessary steps toward your career goals?
 1532 E5: How confident are you in assessing your abilities and aligning them with your career aspirations?
 1533

1534 **B.4 Future Self Continuity**

1535 F1: I can imagine myself at different points in the future.
 1536 F2: I care about myself at different points in the future.
 1537 F3: My future self feels like a completely different person to my present self (reverse scoring).
 1538 F4: My future is closely connected to my present.
 1539 F5: Imagining my future self brings out emotions that are just as real to me as my present self.
 1540

1541 **B.5 Allocation Task**

1542 *B.5.1 Money Allocation Task*

1543 Please assume your priorities and answer the following questions. Imagine you have unexpectedly received a bonus of
 1544 \$1250. Below are several ways you might consider using this money:
 1545 (1) Spend for your academic/professional project (including expenses for equipment, conferences, etc.).
 1546 (2) Enroll in online courses, workshops, or programs related to your professional or academic interests.
 1547 (3) Donate instantly to a charity that supports the victims of the earthquake recently.
 1548

1561 (4) Purchase exam tickets, platform memberships, etc. to complete assignments quickly (such as purchasing literature
1562 works).
1563 (5) Put money into long-term financial plans such as savings accounts, funds, insurance, etc.
1564 (6) Travel to a destination you've longed to visit immediately.
1565 (7) Sign up for a gym, buy sports-related equipment, and participate in sports such as skiing.
1566 (8) Buy quickly updated digital devices for the latest try (such as VR glasses, etc.).
1567
1568

1569 *B.5.2 Time Allocation Task*

1570 Assuming you have a 3-week holiday (21 days) starting from tomorrow, how would you spend it proportionally?

1571 (1) Take a trip to a place you've longed for or preferred.
1572 (2) Explore topics that you learned in school or professional/academic-related programs.
1573 (3) Continue to advance personal academic or career-related projects.
1574 (4) Play video games, go to music festivals, parties, or any leisure and entertainment activities.
1575 (5) Work out or participate in indoor and outdoor sports such as playing balls and mountain climbing.
1576 (6) Learn how to use the latest equipment in your spare time (such as the latest cameras, etc.).
1577 (7) Catch up with friends or families, engage in family or group activities.
1578 (8) Clean and organize the environment where you study/work.

1579 *sectionInterview Questions*

1580 (1) How familiar were you with AI chatbots before this interaction?
1581 (2) What was your initial reaction when you engaged in a conversation with your AI-constructed future self?
1582 (3) How did you feel during this chatbot conversation?
1583 (4) Did you find it easy to communicate with the chatbot, easy to understand?
1584 (5) Is this chatbot knowledgeable and has specialized knowledge?
1585 (6) Is the chatbot's vision of the future reasonable and balanced?
1586 (7) Do you think the chatbot can provide meaningful insights?
1587 (8) How useful are chatbots for your future planning?
1588 (9) How can chatbots help inspire you to imagine the future and recognize/modify your career plans?
1589 (10) What do you think about the overall experience?
1590 (11) What advice would you offer to someone considering using an AI chatbot to talk about the future?
1591 (12) Do you think there are any suggestions for the functionality of this chatbot?

1600 **B.6 Conversation Instruction for Participants**

1601 *B.6.1 Future Self Group:* Please send some messages and have a conversation with your future self in 10 years, lasting
1602 about 15 minutes. Here are some reference topics: What are your current goals and future dreams? What is your
1603 daily life like (activities, interpersonal relationships)? What kind of work will you be doing 10 years from now? What
1604 challenges might you face? Is there anything else you want to say to your future self in 10 years?

1605 *B.6.2 Current Self Group:* Please send some messages and have a conversation with your current self, lasting about 15
1606 minutes. Here are some reference topics:

1613 What are your current goals and dreams? What is your daily life like (activities, interpersonal relationships)? What
 1614 kind of work are you doing now, and what challenges might you face? Is there anything else you want to say to your
 1615 current self?
 1616

1617 C Demographic Table

1618 C.1 Participants of the deisgn process

ID	Age	Gender	Education Level	Major	Experience with AI	Used AI Product
1	29	Female	Master	Design Engineering	Basic	Wenxinyiyan (Baidu)
2	25	Female	Master	Architecture	Advanced	Tongyiqianwen (AliYun)
3	23	Female	Master	Finance	Basic	ChatGPT (OpenAI)
4	24	Female	Master	Journalism	Advanced	ChatGPT (OpenAI), Claude (Anthropic)
5	28	Male	Master	Design Engineering	Advanced	ChatGPT (OpenAI)
6	23	Female	Master	Energetics	Basic	ChatGPT (OpenAI), Wenxinyiyan (Baidu)
7	29	Male	Master	Architecture	Intermediate	ChatGPT (OpenAI)
8	28	Male	Master	Architecture	Advanced	ChatGPT (OpenAI)
9	22	Female	Bachelor	Journalism	Advanced	ChatGPT (OpenAI)
10	21	Male	Bachelor	Communication	Intermediate	ChatGPT (OpenAI), Stable Diffusion
11	23	Female	Bachelor	Computer Science	Advanced	ChatGPT (OpenAI)
12	22	Male	Bachelor	Clinical Medicine	Intermediate	ChatGPT (OpenAI)
13	31	Male	Master	Game Design	Advanced	ChatGPT (OpenAI), Midjourney
14	24	Male	Master	Psychology	Intermediate	ChatGPT (OpenAI)

1641 C.2 Participants of the study

ID	Age	Gender	Education Level	Major	Experience with AI	Used AI Product
1	23	Male	Bachelor	Agriculture	Basic	Wenxinyiyan (Baidu)
2	20	Male	Bachelor	Ocean Engineering	Basic	Tongyiqianwen (AliYun), Wenxinyiyan (Baidu)
3	29	Female	Master	Architecture	Basic	ChatGPT (OpenAI)
4	20	Female	Bachelor	Landscape Architecture	Advanced	ChatGPT (OpenAI), Claude (Anthropic)
5	35	Male	Master	Design Engineering	Advanced	ChatGPT (OpenAI)
6	25	Female	Master	Architecture	Intermediate	ChatGPT (OpenAI)
7	22	Male	Bachelor	Architecture	Advanced	ChatGPT (OpenAI)
8	28	Male	Master	Architecture	Advanced	ChatGPT (OpenAI), Stable Diffusion
9	23	Female	PhD Candidate	Environmental Engineering	Intermediate	ChatGPT (OpenAI)

1665	ID	Age	Gender	Education Level	Major	Experience with AI	Used AI Product
1666	10	25	Male	PhD Candidate	Computer Science	Advanced	ChatGPT (OpenAI)
1667	11	23	Female	Master	Design Study	Advanced	ChatGPT (OpenAI)
1668	12	24	Female	Master	Architecture	Intermediate	ChatGPT (OpenAI)
1669	13	32	Male	Master	Architecture	Intermediate	ChatGPT (OpenAI), Midjourney
1670	14	26	Female	Master	Architecture	Intermediate	ChatGPT (OpenAI), Midjourney
1671	15	26	Female	PhD Candidate	Neuroscience	Advanced	ChatGPT (OpenAI)
1672	16	23	Female	Master	Architecture + Design Study	Advanced	ChatGPT (OpenAI), Midjourney, Runway
1673	17	31	Male	Master	Architecture	Intermediate	ChatGPT (OpenAI), Stable Diffusion
1674	18	22	Female	Bachelor	Journalism	Intermediate	ChatGPT (OpenAI)
1675	19	22	Female	Bachelor	Pedagogy	Advanced	ChatGPT (OpenAI), Wenxinyiyan (Baidu), Kimi (Moonshot)
1676	20	22	Female	Bachelor	Pedagogy	Basic	ChatGPT (OpenAI)
1677	21	23	Male	Master	Geography Information Science	Advanced	ChatGPT (OpenAI), Midjourney
1678	22	21	Female	Bachelor	Industrial Design	Intermediate	ChatGPT (OpenAI), Wenxinyiyan (Baidu)
1679	23	21	Female	Bachelor	Clinical Medicine	Intermediate	Wenxinyiyan (Baidu)
1680	24	18	Female	Bachelor	Management	Basic	ChatGPT (OpenAI)
1681	25	18	Female	Bachelor	Clinical Medicine	Basic	ChatGPT (OpenAI)
1682	26	22	Female	Bachelor	Visual Communication	Basic	Wenxinyiyan (Baidu)
1683	27	19	Female	Bachelor	Environmental Science	Intermediate	Wenxinyiyan (Baidu)
1684	28	23	Male	Bachelor	Physical Education	Basic	Wenxinyiyan (Baidu)
1685	29	22	Male	Bachelor	Computer Science	Intermediate	Wenxinyiyan (Baidu)
1686	30	21	Male	Bachelor	Mechanical and Electrical Engineering	Intermediate	ChatGPT (OpenAI)
1687	31	21	Male	Master	Engineering	Basic	Wenxinyiyan (Baidu)
1688	32	19	Female	Bachelor	Agriculture	Basic	Wenxinyiyan (Baidu), Kimi (Moonshot)

	ID	Age	Gender	Education Level	Major	Experience with AI	Used AI Product
1717	33	21	Male	Bachelor	Athletic Training	Basic	Translation Software
1718	34	21	Male	Bachelor	Physical Education	Basic	Tongyiqianwen (AliYun)
1719	35	21	Male	Bachelor	Intelligent Manufacturing Engineering	Basic	ChatGPT (OpenAI), Tongyiqianwen (AliYun), Wenxinyiyan (Baidu)
1720	36	21	Female	Bachelor	Ocean Engineering	Basic	Tongyiqianwen (AliYun), Wenxinyiyan (Baidu), ChatGLM
1721	37	19	Male	Bachelor	Communication	Basic	ChatGPT (OpenAI), Tongyiqianwen (AliYun), Wenxinyiyan (Baidu)
1722	38	23	Male	Bachelor	Computer Science	Basic	ChatGPT (OpenAI), Midjourney
1723	39	19	Female	Bachelor	Computer Science	Basic	Tongyiqianwen (AliYun), ChatGLM
1724	40	20	Male	Bachelor	Business Administration	Basic	Wenxinyiyan (Baidu), ChatGLM
1725							
1726							
1727							
1728							
1729							
1730							
1731							
1732							
1733							
1734							
1735							
1736							
1737							
1738							
1739							
1740							
1741							
1742							
1743							
1744							
1745							
1746							
1747							
1748							
1749							
1750							
1751							
1752							
1753							
1754							
1755							
1756							
1757							
1758							
1759							
1760							
1761							
1762							
1763							
1764							
1765							
1766							
1767							
1768	Manuscript submitted to ACM						